We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The nucleation of bubbles on rough substrates has been widely investigated in various applications such as electrolysis processes and fluid transportation in pipelines. However, the microscopic mechanisms underlying surface bubble nucleation are not fully understood. Using molecular dynamics simulations, we evaluate the probability of surface bubble nucleation, quantified by the magnitude of the nucleation threshold. Bubble nucleation preferentially occurs at the solid interfaces containing nanoscale defects or wells (nanowells), where reduced nucleation thresholds are observed. For the gas-entrapped nanowell, as the nanowell width decreases, the threshold of bubble nucleation around the nanowell gradually increases, eventually approaching a critical value close to that of a smooth surface. This results from a decrease in the amount of entrapped gas that promotes bubble nucleation, and the entrapped gas eventually converges to a critical state as the width decreases. For the liquid-filled nanowell, bubble nucleation initiates from the inner corner of the large nanowell. As the nanowell width decreases, the threshold is first kept constant and then decreases. This results from a decrease in the amount of filled liquid that inhibits bubble nucleation and from the enhanced confinement effect of the inner wall on the filled liquid as the width decreases. In this work, we propose a multiscale model integrating classical nucleation theory, van der Waals fluid theory and statistical mechanics to describe the relationship between nucleation threshold and nanowell width. Eventually, a unified phase diagram of bubble nucleation at the rough interface is summarised, offering fundamental insights for integrated system design.
This study aimed to examine the relationship between FGF19 and depressive symptoms, measured by BDI scores and investigate the moderating role of smoking.
Methods:
This study involved 156 Chinese adult males (78 smokers and 78 non-smokers) from September 2014 to January 2016. The severity of depressive symptoms was evaluated using the BDI scores. Spearman rank correlation analyses were used to investigate the relationship between CSF FGF19 levels and BDI scores. Additionally, moderation and simple slope analyses were applied to assess the moderating effect of smoking on the relationship between the two.
Results:
FGF19 levels were significantly associated with BDI scores across all participants (r = 0.26, p < 0.001). Smokers had higher CSF FGF19 levels and BDI scores compared to non-smokers (445.9 ± 272.7 pg/ml vs 229.6 ± 162.7 pg/ml, p < 0.001; 2.7 ± 3.0 vs 1.3 ± 2.4, p < 0.001). CSF FGF19 levels were positively associated with BDI scores in non-smokers (r = 0.27, p = 0.015), but no similar association was found among smokers (r = -0.11, p = 0.32). Linear regression revealed a positive correlation between FGF19 and BDI scores (β = 0.173, t = 2.161, 95% CI: 0.015- 0.331, p < 0.05), which was negatively impacted by smoking (β = -0.873, t = -4.644, 95% CI: -1.244 to -0.501, p < 0.001).
Conclusion:
These results highlight the potential role of FGF19 in individuals at risk for presence of or further development of depressive symptoms and underscore the importance of considering smoking status when examining this association.
Background: TERT promoter mutation (TPM) is an established biomarker in meningiomas associated with aberrant TERT expression and reduced progression-free survival (PFS). TERT expression, however, has also been observed even in tumours with wildtype TERT promoters (TP-WT). This study aimed to examine TERT expression and clinical outcomes in meningiomas. Methods: TERT expression, TPM status, and TERT promoter methylation of a multi-institutional cohort of meningiomas (n=1241) was assessed through nulk RNA sequencing (n=604), Sanger sequencing of the promoter (n=1095), and methylation profiling (n=1218). 380 Toronto meningiomas were used for discovery, and 861 external institution samples were compiled as a validation cohort. Results: Both TPMs and TERTpromoter methylation were associated with increased TERT expression and may represent independent mechanisms of TERT reactivation. TERT expression was detected in 30.4% of meningiomas that lacked TPMs, was associated with higher WHO grades, and corresponded to shorter PFS, independent of grade and even among TP-WT tumours. TERT expression was associated with a shorter PFS equivalent to those of TERT-negative meningiomas of one higher grade. Conclusions: Our findings highlight the prognostic significance of TERT expression in meningiomas, even in the absence of TPMs. Its presence may identify patients who may progress earlier and should be considered in risk stratification models.
Background: The WHO grade of meningioma was updated in 2021 to include homozygous deletions of CDKN2A/B and TERT promotor mutations. Previous work including the recent cIMPACT-NOW statement have discussed the potential value of including chromosomal copy number alterations to help refine the current grading system. Methods: Chromosomal copy number profiles were inferred from from 1964 meningiomas using DNA methylation. Regularized Cox regresssion was used to identify CNAs independenly associated with post-surgical and post-RT PFS. Outcomes were stratified by WHO grade and novel CNAs to assess their potential value in WHO critiera. Results: Patients with WHO grade 1 tumours and chromosome 1p loss had similar outcomes to those with WHO grade 2 tumours (median PFS 5.83 [95% CI 4.36-Inf] vs 4.48 [4.09-5.18] years). Those with chromosome 1p loss and 1q gain had similar outcomes to those with WHO grade 3 cases regardless of initial grade (median PFS 2.23 [1.28-Inf] years WHO grade 1, 1.90 [1.23-2.25] years WHO grade 2, compared to 2.27 [1.68-3.05] years in WHO grade 3 cases overall). Conclusions: We advocate for chromosome 1p loss being added as a criterion for a CNS WHO grade of 2 meningioma and addition of 1q gain as a criterion for a CNS WHO grade of 3.
Background: We previously developed a DNA methylation-based risk predictor for meningioma, which has been used locally in a prospective fashion. As a follow-up, we validate this model using a large prospective cohort and introduce a streamlined next-generation model compatible with newer methylation arrays. Methods: The performance of our next-generation predictor was compared with our original model and standard-of-care 2021 WHO grade using time-dependent receiver operating characteristic curves. A nomogram was generated by incorporating our methylation predictor with WHO grade and extent of resection. Results: A total of 1347 meningioma cases were utilized in the study, including 469 prospective cases from 3 institutions and a retrospective cohort of 100 WHO grade 2 cases for model validation. Both the original and next-generation models significantly outperformed 2021 WHO grade in predicting postoperative recurrence. Dichotomizing into grade-specific risk subgroups was predictive of outcome within both WHO grades 1 and 2 tumours (log-rank p<0.05). Multivariable Cox regression demonstrated benefit of adjuvant radiotherapy in high-risk cases specifically, reinforcing its informative role in clinical decision making. Conclusions: This next-generation DNA methylation-based meningioma outcome predictor significantly outperforms 2021 WHO grading in predicting time to recurrence. This will help improve prognostication and inform patient selection for RT.
Background: Meningiomas exhibit considerable heterogeneity. We previously identified four distinct molecular groups (immunogenic, NF2-wildtype, hypermetabolic, proliferative) which address much of this heterogeneity. Despite their utility, the stochasticity of clustering methods and the requirement of multi-omics data limits the potential for classifying cases in the clinical setting. Methods: Using an international cohort of 1698 meningiomas, we constructed and validated a machine learning-based molecular classifier using DNA methylation alone. Original and newly-predicted molecular groups were compared using DNA methylation, RNA sequencing, whole exome sequencing, and clinical outcomes. Results: Group-specific outcomes in the validation cohort were nearly identical to those originally described, with median PFS of 7.4 (4.9-Inf) years in hypermetabolic tumors and 2.5 (2.3-5.3) years in proliferative tumors (not reached in the other groups). Predicted NF2-wildtype cases had no NF2 mutations, and 51.4% had others mutations previously described in this group. RNA pathway analysis revealed upregulation of immune-related pathways in the immunogenic group, metabolic pathways in the hypermetabolic group and cell-cycle programs in the proliferative group. Bulk deconvolution similarly revealed enrichment of macrophages in immunogenic tumours and neoplastic cells in hypermetabolic/proliferative tumours. Conclusions: Our DNA methylation-based classifier faithfully recapitulates the biology and outcomes of the original molecular groups allowing for their widespread clinical implementation.
Ultra-thin liquid sheets generated by impinging two liquid jets are crucial high-repetition-rate targets for laser ion acceleration and ultra-fast physics, and serve widely as barrier-free samples for structural biochemistry. The impact of liquid viscosity on sheet thickness should be comprehended fully to exploit its potential. Here, we demonstrate experimentally that viscosity significantly influences thickness distribution, while surface tension primarily governs shape. We propose a thickness model based on momentum exchange and mass transport within the radial flow, which agrees well with the experiments. These results provide deeper insights into the behaviour of liquid sheets and enable accurate thickness control for various applications, including atomization nozzles and laser-driven particle sources.
We propose a two-sided market entry game and present experiments studying coordination behavior in the game. The two-sided market in the game is operated by an intermediary monopoly platform, serving two sides (i.e., customers and service providers) and featuring asymmetric agents, cross-side network effects, and endogenous market capacity. The game has multiple pure-strategy Nash equilibria if at least one side has a high willingness to enter the market and the other side’s willingness is not very low. We conduct a laboratory experiment involving three treatments corresponding to different combinations of willingness to enter the market among customers and service providers. The experimental results indicate that willingness to enter the market and cross-side network effects significantly influence coordination behavior in two-sided markets. When the multiple pure-strategy Nash equilibria are Pareto ranked on both sides, customers and service providers can coordinate their behavior to the payoff-dominant equilibrium via tacit coordination under strategic uncertainty. However, when the multiple pure-strategy Nash equilibria are Pareto ranked on one side but Pareto equivalent on the other side, coordination failure and disequilibrium occurred, and the equilibria cannot predict the aggregate behavior well. Our experimental results indicate that a thriving two-sided market should coordinate both sides on board.
Clinical high risk for psychosis (CHR) is often managed with antipsychotic medications, but their effects on neurocognitive performance and clinical outcomes remain insufficiently explored. This study investigates the association between aripiprazole and olanzapine use and cognitive and clinical outcomes in CHR individuals, compared to those receiving no antipsychotic treatment.
Methods
A retrospective analysis was conducted on 127 participants from the Shanghai At Risk for Psychosis (SHARP) cohort, categorized into three groups: aripiprazole, olanzapine, and no antipsychotic treatment. Neurocognitive performance was evaluated using the MATRICS Consensus Cognitive Battery (MCCB), while clinical symptoms were assessed through the Structured Interview for Prodromal Syndromes (SIPS) at baseline, 8 weeks, and one year.
Results
The non-medicated group demonstrated greater improvements in cognitive performance, clinical symptoms, and functional outcomes compared to the medicated groups. Among the antipsychotic groups, aripiprazole was associated with better visual learning outcomes than olanzapine. Improvements in neurocognition correlated significantly with clinical symptom relief and overall functional gains at follow-up assessments.
Conclusions
These findings suggest potential associations between antipsychotic use and cognitive outcomes in CHR populations while recognizing that observed differences may reflect baseline illness severity rather than medication effects alone. Aripiprazole may offer specific advantages over olanzapine, underscoring the importance of individualized risk-benefit evaluations in treatment planning. Randomized controlled trials are needed to establish causality.
This paper presents a notched ultra-wideband antenna designed to suppress interference from narrowband communication systems. The antenna features a defected ground structure and a stepped microstrip feedline for improved impedance matching and enhanced bandwidth. A bent slot structure is incorporated into the radiating patch to achieve the band-notched characteristic. It has a wide tunable frequency range which allows for flexible adjustment of the notch frequency. Traditional optimization methods, such as numerical analysis, are computationally expensive and inefficient, while heuristic algorithms are less precise. To address these challenges, an improved one-dimensional convolutional neural network (1DCNN-IPS) model is proposed for optimizing the bent slot design more efficiently. The trained 1DCNN-IPS model can accurately predict the antenna’s electromagnetic parameters, reducing mean squared error and training times compared to traditional methods. This provides an efficient and precise solution for antenna structural optimization.
Spin coating is the process of generating a uniform coating film on a substrate by centrifugal forces during rotation. In the framework of lubrication theory, we investigate the axisymmetric film evolution and contact-line dynamics in spin coating on a partially wetting substrate. The contact-line singularity is regularized by imposing a Navier slip model. The interface morphology and the contact-line movement are obtained by numerical solution and asymptotic analysis of the lubrication equation. The results show that the evolution of the liquid film can be classified into two modes, depending on the rotational speed. At lower speeds, the film eventually reaches an equilibrium state, and we provide a theoretical description of how the equilibrium state can be approached through matched asymptotic expansions. At higher speeds, the film exhibits two or three distinct regions: a uniform thinning film in the central region, an annular ridge near the contact line, and a possible Landau–Levich–Derjaguin-type (LLD-type) film in between that has not been reported previously. In particular, the LLD-type film occurs only at speeds slightly higher than the critical value for the existence of the equilibrium state, and leads to the decoupling of the uniform film and the ridge. It is found that the evolution of the ridge can be well described by a two-dimensional quasi-steady analysis. As a result, the ridge volume approaches a constant and cannot be neglected to predict the variation of the contact-line radius. The long-time behaviours of the film thickness and the contact radius agree with derived asymptotic solutions.
This paper investigates the use of English within the linguistic landscape of Luang Prabang through a combination of photographs and interviews. Specifically, we examine the characteristics of English in the linguistic landscape of Luang Prabang, the roles played by English, and the perceptions of merchants and consumers towards it. The study finds that: first, English is frequently used alongside Lao, particularly in bilingual signs, and it is also used alongside other languages within multilingual sign combinations. English predominantly appears in areas heavily frequented by consumers, where it is utilized for economic benefit. Second, English primarily fulfills the following roles in the linguistic landscape: cultural heritage bearer, tourism information provider, cultural exchange facilitator, economic opportunities creator, educational resource provider, and international image broadcaster. Third, shop owners and consumers generally express satisfaction with the presence of English in Luang Prabang's linguistic landscape, believing that English promotes economic development, cultural exchange, and brand establishment. However, some interviewees also highlight shortcomings, such as concerns over traditional culture and unfriendliness towards non-native English speakers. This study underscores the pivotal role of English in bridging cultural and economic divides in Luang Prabang, offering insights for policymakers on language policy and tourism management.
The body condition of cows during the early perinatal period has a long-term impact on the health of their offspring calves; however, research on the mechanisms of liver metabolism in this context is limited. This study investigates the effects of pre-perinatal cow body condition score (BCS) on various blood biochemical, antioxidant and immune indices in offspring calves. The calves were categorized into two groups based on their mothers’ BCS: the high body condition group (OHBCS) and the low body condition group (OLBCS). The results indicate that the levels of insulin, non-esterified fatty acid, β-hydroxybutyrate, immunoglobulin G, glutathione peroxidase and superoxide dismutase in the blood of the OHBCS group were significantly higher than those in the OLBCS group (p < 0.05). In contrast, serum levels of tumor necrosis factor-α and interleukin-2 in the OHBCS group were significantly lower than those in the OLBCS group (p < 0.001 and p < 0.05, respectively). Additionally, integrating metabolomic and transcriptomic data revealed that levels of the tricarboxylic acid cycle, fatty acid β-oxidation and ornithine cycling were reduced in the OHBCS group, whereas the ketogenic pathway and triglyceride synthesis pathway were enhanced. These findings elucidate the mechanisms by which pre-perinatal cow BCS influences liver metabolism in offspring calves.
The flexible delivery of single-frequency lasers is far more challenging than that of conventional lasers due to the onset of stimulated Brillouin scattering (SBS). Here we present the successful delivery of 100 W single-frequency laser power through 100 m of anti-resonant hollow-core fiber (AR-HCF) in an all-fiber configuration, with the absence of SBS. By employing a custom-designed AR-HCF with a mode-field diameter matching that of a large-mode-area panda fiber, the system achieves high coupling efficiency without the need for free-space components or fiber post-processing. The AR-HCF attains a transmission efficiency of 92%, delivering an output power of 100.3 W with a beam quality factor (M2) of 1.22. The absence of SBS is confirmed through monitoring backward light, which shows no increase in intensity. This all-fiber architecture ensures high stability, compactness and efficiency, potentially expanding the application scope of single-frequency lasers in high-precision metrology, optical communication, light detection and ranging systems, gravitational wave detection and other advanced applications.
This research seeks to ascertain the prevalence and determinants of mirror-image dextrocardia in fetuses
Study design:
With December 2022 as the reference point, we compiled colleted data on pregnant women who carried fetuses with mirror-image dextrocardia in Xi’an, Shaanxi Province: September–October 2022, November 2022, and December 2022–January 2023. An online questionnaire was distributed to 209 pregnant across China who had contracted COVID-19. The case group comprised women whose final menstrual cycle occurred in November 2022 and who had a fetus with mirror-image dextrocardia. Women with a November 2022 final menstrual period and a fetus without this condition made up the control group. To identify the risk factors associated with fetal mirror-image dextrocardia, both univariate and multivariate logistic regression analyses were employed.
Results:
A significant difference was noted in the gestational age at COVID-19 infection women with a September to October 2022 and December 2022 to January 2023 final menstrual period who did not bear a fetus with mirror-image dextrocardia, and those with a November 2022 final menstrual period whose fetus exhibited this condition. The univariate and multivariate analyses conducted on pregnant women with a final menstrual period in November 2022 who had contracted COVID-19 revealed significant differences in the presence and duration of fever between those bearing fetuses with mirror-image dextrocardia and those without (P = 0.000).
Conclusion:
The findings suggest two critical factors to the increased prevalence of fetal mirror-image dextrocardia: 1) the infection timing which occurs between the 4th and 6th week of pregnancy and 2) the presence of fever and its prolonged duration.
The stability of Taylor–Couette flow modulated by oscillatory wall suction/blowing is investigated using Floquet linear stability analysis. The growth rate and stability mode are obtained by numerical calculation and asymptotic expansion. By calculating the effect of wall suction/blowing on the critical mode of steady Taylor–Couette flow, it is found that for most suction/blowing parameters, the maximum disturbance growth rate of the critical mode decreases and the flow becomes more stable. Only in a very small parameter region, wall suction/blowing increases the maximum disturbance growth rate of the critical mode, resulting in flow instability when the gap between the cylinders is large. The asymptotic results for small suction/blowing amplitudes indicate that the change of flow instability is mainly due to the steady correction of the basic flow induced by the modulation. A parametric study of the critical inner Reynolds number and the associated critical wavenumber is performed. It is found that the flow is stabilized by the modulation for most of the parameter ranges considered. For a wide gap between the cylinders, it is possible for the system to be mildly destabilized by weak suction/blowing.
A high-energy pulsed vacuum ultraviolet (VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet (Nd:YAG) amplifier in a KBe2BO3F2 prism-coupled device was demonstrated. The ultraviolet (UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm. A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers. The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
This study aimed to demonstrate the utilization value of 1PN embryos. The 1PN zygotes collected from December 2021 to September 2022 were included in this study. The embryo development, the pronuclear characteristics, and the genetic constitutions were investigated. The overall blastocyst formation and good-quality blastocyst rates in 1PN zygotes were 22.94 and 16.24%, significantly lower than those of 2PN zygotes (63.25 and 50.23%, respectively, P = 0.000). The pronuclear characteristics were found to be correlated with the developmental potential. When comparing 1PN zygotes that developed into blastocysts to those that arrested, the former exhibited a significantly larger area (749.49 ± 142.77 vs. 634.00 ± 119.05, P = 0.000), a longer diameter of pronuclear (29.81 ± 3.08 vs. 27.30 ± 3.00, P = 0.000), and a greater number of nucleolar precursor body (NPB) (11.56 ± 3.84 vs. 7.19 ± 2.73, P = 0.000). Among the tested embryos, the diploidy euploidy rate was significantly higher in blastocysts in comparison with the arrested embryos (66.67 vs. 11.76%, P = 0.000), which was also significantly higher in IVF-1PN blastocysts than in ICSI-1PN blastocysts (75.44 vs. 25.00%, P = 0.001). However, the pronuclear characteristics were not found to be linked to the chromosomal ploidy once they formed blastocysts.
In summary, while the developmental potential of 1PN zygotes is reduced, our study shows that, in addition to the reported pronuclear area and diameter, the number of NPB is also associated with their developmental potential. The 1PN blastocysts exhibit a high diploidy euploidy rate, are recommend to be clinically used post genetic testing, especially for patients who do not have other 2PN embryos available.
The aim of this study was to investigate the antioxidant effect of alpha-lipoic acid (α-LA) in dairy cows and its metabolic mechanism. Thirty Holstein cows weighing 550 ± 25 kg, 200 ± 15 days of lactation and calving 2–3 times were randomly divided into three groups, ten cows in each group. Different doses of α-LA were added based on body weight: 0 (CTL), 30 (LA-L) and 60 (LA-H) mg/kg per head per day; 7 days adaptation period, 30 days formal period. Milk production was recorded daily during the test period. Milk and blood samples were collected on the last day. ELISA kits and automatic biochemical analyser were used to detect the indicators in blood; serum metabolites were detected and analysed by non-target metabolomics. The results of the study showed that the addition of α-LA significantly increased milk yield; blood concentrations for HDL, triglyceride, cortisol and triiodothyronine were significantly elevated; and levels of glutathione reductase and nitric oxide synthase were significantly reduced in LA-L group as compared to CTL group. The concentrations of IL-1β, IL-2, TNF-α, IgG and IgA were significantly higher after supplementation with α-LA. Metabolomics analysis revealed 13 and 15 differential metabolites each in positive or negative modes. Methylmalonic acid levels were significantly higher following α-LA supplementation compared to CTL group, as were D-lactose, D-maltose and oleanolic acid levels in LA-L group. In summary, α-LA can enhance milk production, improve antioxidant capacity and immunity, and is more beneficial for animal production and economic benefits at 30 mg/kg.
To investigate the flame acceleration to detonation in 2.0 and 0.5 mm planar glass combustion chambers, the experiments have been conducted utilising ethylene/oxygen mixtures at atmospheric pressure and temperature. The high-speed camera has been used to record the revolution of flame front and pressure inside the combustion chamber. Different equivalence ratios and ignition locations have been considered in the experiments. The results show that the detonation pressure in the 2 mm thick chamber is nearly three times of Chapman-Jouguet pressure, while detonation pressure in the 0.5 mm thick chamber is only 45.7% of the Chapman-Jouguet value at the stoichiometric mixture. This phenomenon is attributed to the larger pressure loss in the thinner chamber during the detonation propagation. As the value of equivalence ratio is 2.2, the detonation cannot be produced in the 2 mm thick chamber, while the detonation can be generated successfully in the 0.5 mm thick chamber. This phenomenon indicates that the deflagration is easily to be accelerated and transformed into the detonation, due to a larger wall friction and reflection. Besides, the micro-obstacle has been added into the combustor can shorten the detonation transition time and reduces the distance of the detonation transition.