We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Tuberculosis (TB) remains a significant public health concern in China. Using data from the Global Burden of Disease (GBD) study 2021, we analyzed trends in age-standardized incidence rate (ASIR), prevalence rate (ASPR), mortality rate (ASMR), and disability-adjusted life years (DALYs) for TB from 1990 to 2021. Over this period, HIV-negative TB showed a marked decline in ASIR (AAPC = −2.34%, 95% CI: −2.39, −2.28) and ASMR (AAPC = −0.56%, 95% CI: −0.62, −0.59). Specifically, drug-susceptible TB (DS-TB) showed reductions in both ASIR and ASMR, while multidrug-resistant TB (MDR-TB) showed slight decreases. Conversely, extensively drug-resistant TB (XDR-TB) exhibited upward trends in both ASIR and ASMR. TB co-infected with HIV (HIV-DS-TB, HIV-MDR-TB, HIV-XDR-TB) showed increasing trends in recent years. The analysis also found an inverse correlation between ASIRs and ASMRs for HIV-negative TB and the Socio-Demographic Index (SDI). Projections from 2022 to 2035 suggest continued increases in ASIR and ASMR for XDR-TB, HIV-DS-TB, HIV-MDR-TB, and HIV-XDR-TB. The rising burden of XDR-TB and HIV-TB co-infections presents ongoing challenges for TB control in China. Targeted prevention and control strategies are urgently needed to mitigate this burden and further reduce TB-related morbidity and mortality.
Overnutrition during before and pregnancy can cause maternal obesity and raise the risk of maternal metabolic diseases during pregnancy, and in offspring. Lentinus edodes may prevent or reduce obesity. This study aimed to to assess Lentinus edodes fermented products effects on insulin sensitivity, glucose and lipid metabolism in maternal and offspring, and explore its action mechanism. A model of overnutrition during pregnancy and lactation was developed using a 60 % kcal high-fat diet in C57BL6/J female mice. Fermented Lentinus edodes (FLE) was added to the diet at concentrations of 1 %, 3 %, and 5 %. The results demonstrated that FLE to the gestation diet significantly reduced serum insulin levels and homeostatic model assessment for insulin resistance (HOMA-IR) in pregnant mice. FLE can regulate maternal lipid metabolism and reduce fat deposition. Meanwhile, the hepatic phosphoinositide-3-kinase-protein kinase (PI3K/AKT) signaling pathway was significantly activated in the maternal mice. There is a significant negative correlation between maternal FLE supplementation doses and offspring body fat percentage and visceral fat content. Furthermore, FLE supplementation significantly increased offspring weaning litter weight, significantly reduced fasting glucose level, serum insulin level, HOMA-IR and serum glucose level, significantly activated liver PI3K/AKT signaling pathway in offspring, and upregulated the expression of liver lipolytic genes adipose triglyceride lipase, hormone-sensitive lipase and carnitine palmitoyltransferase 1 mRNA. Overall, FLE supplementation can regulate maternal lipid metabolism and reduce fat deposition during pregnancy and lactation, and it may improve insulin sensitivity in pregnant mothers and offspring at weaning through activation of the PI3K/AKT signaling pathway.
This study aimed to compare the clinical outcomes of using refrigerated versus pre-warmed media for preparing time-lapse dishes in in vitro fertilization (IVF). Patients undergoing their first IVF/ICSI cycle were divided into two groups. The control group used pre-warmed culture media, while the experimental group used refrigerated culture media. The osmotic pressure of the culture droplets in both groups was tested. No statistical differences were found between the two groups’ basic data. The proportion of air microbubbles affecting imaging significantly decreased (4.55% vs. 37.97%, P < 0.001) when using pre-warmed media. However, the blastocyst formation rate (56.62% vs. 49.70%, P = 0.046) and total high-quality embryo rate (22.26% vs. 17.06%, P = 0.047) were significantly higher in the refrigerated media group compared to the pre-warmed media group. The higher rate of high-quality embryos in the refrigerated media group might result in a higher single embryo transfer rate (45.10% vs. 18.52%, P = 0.020) and implantation rate (58.23% vs. 34.69%, P = 0.010). From day –1 to day 1, osmolality increased, with the P-3.5 group showing a significant elevation compared to the other three groups. After 5 days of incubation, the osmotic pressure of group R-4.0 was significantly lower than that of groups P-3.5, P-4.0 and P-3.5. In conclusion, refrigerated culture media dishes helped stabilize the osmotic pressure of the culture microenvironment and reduce water evaporation. The refrigerated group showed a higher rate of high-quality embryos and live births, although pre-warmed culture media effectively reduced the occurrence of air microbubbles that affect embryo imaging in the next day’s dishes.
The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is a highly destructive polyvorous pest with a wide host range and the ability to feed continuously with seasonal changes. This destructive pest significantly damages crops and can also utilize non-agricultural plants, such as weeds, as alternative hosts. However, the adaptation mechanisms of S. frugiperda when switching between crop and non-crop hosts remain poorly understood, posing challenges for effective monitoring and integrated pest management strategies. Therefore, this study aims to elucidate the adaptability of S. frugiperda to different host plants. Results showed that corn (Zea mays L.) was more suitable for the growth and development of S. frugiperda than wheat (Triticum aestivum L.) and goosegrass (Eleusine indica). Transcriptome analysis identified 699 genes differentially expressed when fed on corn, wheat, and goosegrass. The analysis indicated that the detoxification metabolic pathway may be related to host adaptability. We identified only one SfGSTs2 gene within the GST family and investigated its functional role across different developmental stages and tissues by analysing its spatial and temporal expression patterns. The SfGSTs2 gene expression in the midgut of larvae significantly decreased following RNA interference. Further, the dsRNA-fed larvae exhibited a decreased detoxification ability, higher mortality, and reduced larval weight. The findings highlight the crucial role of SfGSTs2 in host plant adaptation. Evaluating the feeding preferences of S. frugiperda is significant for controlling important agricultural pests.
Parkinson’s disease (PD) is a severe neurodegenerative disorder characterized by prominent motor and non-motor (e.g., cognitive) abnormalities. Notwithstanding Food and Drug Administration (FDA)-approved treatments (e.g., L-dopa), most persons with PD do not adequately benefit from the FDA-approved treatments and treatment emergent adverse events are often reasons for discontinuation. To date, no current therapy for PD is disease modifying or curative. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are central nervous system (CNS) penetrant and have shown to be neuroprotective against oxidative stress, neuroinflammation, and insulin resistance, as well as promoting neuroplasticity. Preclinical evidence suggests that GLP-1RAs also attenuate the accumulation of α-synuclein. The cellular and molecular effects of GLP-1RAs provide a basis to hypothesize putative therapeutic benefit in individuals with PD. Extant preclinical and clinical trial evidence in PD provide preliminary evidence of clinically meaningful benefit in the cardinal features of PD. Herein, we synthesize extant preclinical and early-phase clinical evidence, suggesting that GLP-1RAs may be beneficial as a treatment and/or illness progression modification therapeutic in PD.
As a novel type of catalytic Janus micromotor (JM), a double-bubble-powered Janus micromotor has a distinct propulsion mechanism that is closely associated with the bubble coalescence in viscous liquids and corresponding flow physics. Based on high-speed camera and microscopic observation, we provide the first experimental results of the coalescence of two microbubbles near a JM. By performing experiments with a wide range of Ohnesorge numbers, we identify a universal scaling law of bubble coalescence, which shows a cross-over at dimensionless time $\tilde{t}$ = 1 from an inertially limited viscous regime with linear scaling to an inertial regime with 1/2 scaling. Due to the confinement from the nearby solid JM, we observe asymmetric neck growth and find the combined effect of the surface tension and viscosity. The bubble coalescence and detachment can result in a high propulsion speed of ∼0.25 m s−1 for the JM. We further characterise two contributions to the JM’s displacement propelled by the coalescing bubble: the counteraction from the liquid due to bubble deformation and the momentum transfer during bubble detachment. Our findings provide a better understanding of the flow dynamics and transport mechanism in micro- and nano-scale devices like the swimming microrobot and bubble-powered microrocket.
Two-dimensional simulations incorporating detailed chemistry are conducted for detonation initiation induced by dual hot spots in a hydrogen/oxygen/argon mixture. The objective is to examine the transient behaviour of detonation initiation as facilitated by dual hot spots, and to elucidate the underlying mechanisms. Effects of hot spot pressure and distance on the detonation initiation process are assessed; and five typical initiation modes are identified. It is found that increasing the hot spot pressure promotes detonation initiation, but the impact of the distance between dual hot spots on detonation initiation is non-monotonic. During the initiation process, the initial hot spot autoignites, and forms the cylindrical shock waves. Then, the triple-shock structure, which is caused by wave collisions and consists of the longitudinal detonation wave, transverse detonation wave and cylindrical shock wave, dominates the detonation initiation behaviour. A simplified theoretical model is proposed to predict the triple-point path, whose curvature quantitatively indicates the diffraction intensity of transient detonation waves. The longitudinal detonation wave significantly diffracts when the curvature of the triple-point path is large, resulting in the failed detonation initiation. Conversely, when the curvature is small, slight diffraction effects fail to prevent the transient detonation wave from developing. The propagation of the transverse detonation wave is affected not only by the diffraction effects but also by the mixture reactivity. When the curvature of the triple-point trajectory is large, a strong cylindrical shock wave is required to compress the mixture, enhancing its reactivity to ensure the transverse detonation wave can propagate without decoupling.
In this chapter, we showed the broader application of Polyhedral Graphic statistics in other fields of science and briefly introduced research directions and topics that go beyond the polyhedral limitations of this method. Particularly, we show a research project in which graphical methods were used to analyze the structural pattern of a dragonfly wing. The result was then combined with machine learning methods to generate the structure of a wing of an airplane with enhanced out-of-plane performance. We also visited applications in the design of strut-and-tie structures for referenced concrete and its further application in designing multi-material structural components where the direction of the deposition of material is adjusted with respect to the internal force flow to maximize mechanical performance. The application of Polyhedral Graphic Statics was shown in the design of cellular solids and briefly discussed how particular subdividing of the force diagram can control the stress distribution in the system and the overall behavior of the structure from bending dominant to stretching dominant system. We also showed the application of the structures designed using Polyhedral Graphic Statics in self-healing structural components and 3D-printed structural systems with maximized surface area and minimized mass. Another important topic was the extension of the methods of Polyhedral Graphic Statics to non-polyhedral systems using disjointed force polyhedra. In the end, advanced topics related to completeness, being, and kinematics in Polyhedral Graphic Statics were discussed, which opened the door to many further research directions in this field.
Public acceptability is crucial for the effectiveness of policy implementation. The carbon trading market is widely adopted by many countries and regions to achieve carbon neutrality and mitigate climate change. Our paper utilizes China's carbon trading market as a quasi-natural experiment, drawing on microdata from the China Residential Energy Consumption Survey to analyze the policy's impact on public acceptance of carbon pricing. We find that the carbon trading market significantly reduces the acceptability of carbon prices among households working in carbon-related industries in the pilot areas. This conclusion is still valid after a series of robustness checks. Regarding the mechanism of influence, the carbon trading market raises households' perceived costs, mainly reflected in the negative impact of rising product prices and increasing living costs. Finally, enhancing public perception of carbon, improving the distribution effect and decreasing the information asymmetry of the policy implementation can improve public acceptability of carbon prices.
Extant literature implicates the role of glucagon-like peptide-1 (GLP-1) and GLP-1 receptor agonists (GLP-1RAs) on modulating alcohol-associated behaviours, with a particular emphasis of these agents on neural circuits subserving reward and appetite control. Herein, we explore the potential effects of GLP-1RAs on alcohol-associated behaviours in brain regions implicated in reward processing facilitating the repurposing of these agents for the treatment and prevention of problematic drinking. Understanding how GLP-1’s analogues interact with alcohol-related behaviours may underscore the development of therapeutic strategies for alcohol use disorder (AUD) and those with comorbid metabolic disorders.
Methods:
A systematic review was conducted, wherein relevant literature was identified through Web of Science, PubMed, and OVID (MedLINE, Embase, AMED, PsycInfo, JBI EBP) from database inception to October 27th, 2024. Preclinical and clinical studies examining the association between GLP-1RAs and alcohol-related behaviours were assessed.
Results:
Preclinical studies (n = 19) indicate that GLP-1RAs attenuate alcohol-related behaviours, with exenatide demonstrating significant dose-dependent effects in high alcohol-consuming phenotypes. Semaglutide and liraglutide are associated with reduced alcohol intake, though their effects were often transient. In human studies (n = 2) with AUD, semaglutide significantly reduced alcohol consumption, while exenatide showed mixed results, with reductions in alcohol drinking within high BMI subpopulations.
Discussion:
Extant preclinical and clinical literature provides preliminary support for the potential therapeutic role of GLP-1RAs in attenuating alcohol consumption and preference. There is a need for large well controlled studies evaluating the effect of GLP-1RAs as a treatment strategy for behavioural modifications in individuals living with alcohol use disorder.
Glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-1 receptor agonist (GLP-1 RA) administration has been associated with neuroproliferative effects and modulatory effects in neuronal pathways. Herein, we conducted a comprehensive synthesis of the effects of GLP-1 and GLP-1 RAs on neurogenesis.
Methods:
We examined studies that investigate changes in neurogenesis mediated by GLP-1 and GLP-1 RA administration in both human and animal populations. Relevant articles were retrieved through OVID (MedLine, Embase, AMED, PsychINFO, JBI EBP Database), PubMed, and Web of Science from database inception to July 2nd. Primary studies investigating the role of GLP-1 and GLP-1 RAs on neurogenesis were included for analysis.
Results:
GLP-1 and GLP-1 RAs (i.e. exenatide, geniposide, liraglutide, lixisenatide, and semaglutide), increased neurogenesis within the dentate gyrus, hippocampus, olfactory bulb, and the medial striatum in animal models. Additionally, GLP-1 and GLP-1 RAs were associated with modulating changes in multiple apoptotic pathways and upregulating survival pathways.
Discussion:
GLP-1 and GLP-1 RAs are positively associated with neurogenesis. This effect may have translational implications insofar as disparate mental disorders that are characterised by neurogenesis defects (e.g. depressive disorders and neurocognitive disorders) may be benefitted by these agents.
Previous research has shown abnormal functional network gradients in Alzheimer’s disease (AD). Structural network gradient is capable of capturing continuous changes in brain morphology and has the ability to elucidate the underlying processes of neurodevelopment. However, it remains unclear whether structural network gradients are altered in AD and what associations exist between these changes and cognitive function, and gene expression profiles.
Methods
By constructing an individualized structural network gradient decomposition framework, we calculated the morphological similarity network (MSN) gradients for 404 subjects (186 AD patients and 218 normal controls). We investigated AD-related alterations in MSN gradients, along with the associations between MSN gradients and cognitive function, MSN topological properties, and gene expression profiles.
Results
Our findings indicated that the principal MSN gradient alterations in AD were primarily characterized by an increase in the primary and secondary sensory cortices and a decrease in the association cortex 1. The primary and higher-order cortices exhibited opposite associations with cognition, including executive function, language skills, and memory processes. Moreover, the principal MSN gradients were found to significantly predict cognitive function in AD. The altered gradient pattern was 14.8% attributable to gene expression profiles, and the genes demonstrating the highest correlation are involved in metabolic activity and synaptic signaling.
Conclusions
Our results offered novel insights into the underlying mechanisms of structural brain network impairment in AD patients, enhancing our understanding of the neurobiological processes responsible for impaired cognition in patients with AD, and offering a new dimensional structural biomarker for AD.
Given a Polish group G, let $E(G)$ be the right coset equivalence relation $G^\omega /c(G)$, where $c(G)$ is the group of all convergent sequences in G. We first established two results:
(1) Let $G,H$ be two Polish groups. If H is TSI but G is not, then $E(G)\not \le _BE(H)$.
(2) Let G be a Polish group. Then the following are equivalent: (a) G is TSI non-archimedean; (b)$E(G)\leq _B E_0^\omega $; and (c) $E(G)\leq _B {\mathbb {R}}^\omega /c_0$. In particular, $E(G)\sim _B E_0^\omega $ iff G is TSI uncountable non-archimedean.
A critical theorem presented in this article is as follows: Let G be a TSI Polish group, and let H be a closed subgroup of the product of a sequence of TSI strongly NSS Polish groups. If $E(G)\le _BE(H)$, then there exists a continuous homomorphism $S:G_0\rightarrow H$ such that $\ker (S)$ is non-archimedean, where $G_0$ is the connected component of the identity of G. The converse holds if G is connected, $S(G)$ is closed in H, and the interval $[0,1]$ can be embedded into H.
As its applications, we prove several Rigid theorems for TSI Lie groups, locally compact Polish groups, separable Banach spaces, and separable Fréchet spaces, respectively.
We have developed an interactive system comprising a soft wearable robot hand and a wireless task board, facilitating the interaction between the hand and regular daily objects for task-oriented training in stroke rehabilitation. A ring-reinforced soft actuator (RSA) to accommodate different hand sizes and enable flexion and extension movements was introduced in this paper. Individually controlled finger actuators assist stroke patients during various grasping tasks. A wireless task board was developed to support the training, allowing for the placement of training objects and seamless interaction with the soft robotic hand. Evaluation with seven stroke subjects shows significant improvements in upper limb functions (FMA), hand-motor abilities (ARAT, BBT), and maximum grip strengths after 20 sessions of this task-oriented training. These improvements were observed to persist for at least 3 months post-training. The results demonstrate its potential to enhance stroke rehabilitation and promote hand-motor recovery. This lightweight, user-friendly interactive system facilitates frequent hand practice and easily integrates into regular rehabilitation therapy routines.
This paper proposes an online robust self-learning terminal sliding mode control (RS-TSMC) with stability guarantee for balancing control of reaction wheel bicycle robots (RWBR) under model uncertainties and disturbances, which improves the balancing control performance of RWBR by optimising the constrained output of TSMC. The TSMC is designed for a second-order mathematical model of RWBR. Then robust adaptive dynamic programming based on an actor-critic algorithm is used to optimise the TSMC only by data sampled online. The system closed-loop stability and convergence of the neural network weights are guaranteed based on the Lyapunov analysis. The effectiveness of the proposed algorithm is demonstrated through simulations and experiments.
This study aimed to assess the relationship between COVID-19 infection-related conditions and depressive symptoms among medical staff after easing the zero-COVID policy in China, and to further examine the mediating role of professional burnout.
Methods
A total of 1716 medical staff from all levels of health care institutions in 16 administrative districts of Beijing, China, were recruited to participate at the end of 2022 in this cross-sectional study. Several multiple linear regressions and mediating effects tests were performed to analyze the data.
Results
At the beginning of the end of the zero-COVID policy in China, 91.84% of respondents reported infection with COVID-19. After adjusting for potential confounding variables, the severity of infection symptoms was significantly positively associated with high levels of depressive symptoms (β = 0.06, P < 0.001), and this association was partially mediated by professional burnout. Specifically, emotional exhaustion (95% CI, 0.131, 0.251) and depersonalization (95% CI, 0.009, 0.043) significantly mediated the association between the severity of infection symptoms and depressive symptoms.
Conclusions
The mental health of medical staff with more severe symptoms of COVID-19 infection should be closely monitored. Also, interventions aimed at reducing emotional exhaustion and depersonalization may effectively reduce their risk of developing depressive symptoms.
Many psychotropic drugs are highly associated with related weight gain. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are established anti-obesity and glucose-lowering agents. Preliminary evidence also indicates they are fit for purpose in mitigating psychotropic drug-related weight gain (PDWG). This systematic review aims to synthesize the extant evidence from randomized controlled trials (RCTs) on the effects of GLP-1RAs on weight change in persons experiencing PDWG.
Methods
Online databases (ie, PubMed, OVID Medline, Google Scholar) were searched to identify relevant studies from inception to January 1, 2024. Articles were screened by title, abstract, and full-text by three independent reviewers against inclusion and exclusion criteria.
Results
We identified six studies with participants aged ≥18 (n=374) that were eligible for inclusion in our systematic review. Most studies reported a significant and clinically meaningful effect of GLP-1RAs on anthropometrics and/or metabolics. All RCTs replicated the finding of modest or greater effects of GLP-1RAs; the most studied agents were liraglutide and exenatide. There was insufficient literature to conduct a meta-analysis.
Conclusion
Evidence suggests that GLP-1RAs are effective in mitigating weight gain in persons prescribed psychiatric medication. It is hypothesized that GLP-1RAs may moderate weight change in persons prescribed psychiatric medication through direct effects on metabolism and cognitive processes implicated in hunger/satiety. Future studies should aim to explore the long-term safety, tolerability, and efficacy profiles of various GLP-1RAs in the treatment and prevention of abnormal weight and metabolic homeostasis in psychiatric populations.
Exercise-based cardiac rehabilitation is effective in improving cardiovascular disease risk factor management, cardiopulmonary function, and quality of life. However, the precise mechanisms underlying exercise-induced cardioprotection remain elusive. Recent studies have shed light on the beneficial functions of noncoding RNAs in either exercise or illness models, but only a limited number of noncoding RNAs have been studied in both contexts. Hence, the present study aimed to elucidate the pathophysiological implications and molecular mechanisms underlying the association among exercise, noncoding RNAs, and cardiovascular diseases. Additionally, the present study analysed the most effective and personalized exercise prescription, serving as a valuable reference for guiding the clinical implementation of cardiac rehabilitation in patients with cardiovascular diseases.
Femtosecond oscillators with gigahertz (GHz) repetition rate are appealing sources for spectroscopic applications benefiting from the individually accessible and high-power comb line. The mode mismatch between the potent pump laser diode (LD) and the incredibly small laser cavity, however, limits the average output power of existing GHz Kerr-lens mode-locked (KLM) oscillators to tens of milliwatts. Here, we present a novel method that solves the difficulty and permits high average power LD-pumped KLM oscillators at GHz repetition rate. We propose a numerical simulation method to guide the realization of Kerr-lens mode-locking and comprehend the dynamics of the Kerr-lens mode-locking process. As a proof-of-principle demonstration, an LD-pumped Yb:KGW oscillator with up to 6.17-W average power and 184-fs pulse duration at 1.6-GHz repetition rate is conducted. The simulation had a good agreement with the experimental results. The cost-effective, compact and powerful laser source opens up new possibilities for research and industrial applications.