To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Pursuing ideas in [6], we determine the isometry classes of unimodular lattices of rank $28$, as well as the isometry classes of unimodular lattices of rank $29$ without nonzero vectors of norm $\leq 2$. We also provide some invariant that allows to distinguish these lattices and to independently check with a computer that our lists are complete.
Let $g(x)=x^3+ax^2+bx+c$ and $f(x)=g(x^3)$ be irreducible polynomials with rational coefficients, and let $ {\mathrm{Gal}}(f)$ be the Galois group of $f(x)$ over $\mathbb {Q}$. We show $ {\mathrm{Gal}}(f)$ is one of 11 possible transitive subgroups of $S_9$, defined up to conjugacy; we use $ {\mathrm{Disc}}(f)$, $ {\mathrm{Disc}}(g)$ and two additional low-degree resolvent polynomials to identify $ {\mathrm{Gal}}(f)$. We further show how our method can be used for determining one-parameter families for a given group. Also included is a related algorithm that, given a field $L/\mathbb {Q}$, determines when L can be defined by an irreducible polynomial of the form $g(x^3)$ and constructs such a polynomial when it exists.
Let ${\mathbb {Z}}_{K}$ denote the ring of algebraic integers of an algebraic number field $K = {\mathbb Q}(\theta )$, where $\theta $ is a root of a monic irreducible polynomial $f(x) = x^n + a(bx+c)^m \in {\mathbb {Z}}[x]$, $1\leq m<n$. We say $f(x)$ is monogenic if $\{1, \theta , \ldots , \theta ^{n-1}\}$ is a basis for ${\mathbb {Z}}_K$. We give necessary and sufficient conditions involving only $a, b, c, m, n$ for $f(x)$ to be monogenic. Moreover, we characterise all the primes dividing the index of the subgroup ${\mathbb {Z}}[\theta ]$ in ${\mathbb {Z}}_K$. As an application, we also provide a class of monogenic polynomials having non square-free discriminant and Galois group $S_n$, the symmetric group on n letters.
We prove new results concerning the additive Galois module structure of wildly ramified non-abelian extensions $K/\mathbb{Q}$ with Galois group isomorphic to $A_4$, $S_4$, $A_5$, and dihedral groups of order $2p^n$ for certain prime powers $p^n$. In particular, when $K/\mathbb{Q}$ is a Galois extension with Galois group $G$ isomorphic to $A_4$, $S_4$ or $A_5$, we give necessary and sufficient conditions for the ring of integers $\mathcal{O}_{K}$ to be free over its associated order in the rational group algebra $\mathbb{Q}[G]$.
Let F be a subfield of the complex numbers and $f(x)=x^6+ax^5+bx^4+cx^3+bx^2+ax+1 \in F[x]$ an irreducible polynomial. We give an elementary characterisation of the Galois group of $f(x)$ as a transitive subgroup of $S_6$. The method involves determining whether three expressions involving a, b and c are perfect squares in F and whether a related quartic polynomial has a linear factor. As an application, we produce one-parameter families of reciprocal sextic polynomials with a specified Galois group.
We investigate a novel geometric Iwasawa theory for ${\mathbf Z}_p$-extensions of function fields over a perfect field k of characteristic $p>0$ by replacing the usual study of p-torsion in class groups with the study of p-torsion class group schemes. That is, if $\cdots \to X_2 \to X_1 \to X_0$ is the tower of curves over k associated with a ${\mathbf Z}_p$-extension of function fields totally ramified over a finite nonempty set of places, we investigate the growth of the p-torsion group scheme in the Jacobian of $X_n$ as $n\rightarrow \infty $. By Dieudonné theory, this amounts to studying the first de Rham cohomology groups of $X_n$ equipped with natural actions of Frobenius and of the Cartier operator V. We formulate and test a number of conjectures which predict striking regularity in the $k[V]$-module structure of the space $M_n:=H^0(X_n, \Omega ^1_{X_n/k})$ of global regular differential forms as $n\rightarrow \infty .$ For example, for each tower in a basic class of ${\mathbf Z}_p$-towers, we conjecture that the dimension of the kernel of $V^r$ on $M_n$ is given by $a_r p^{2n} + \lambda _r n + c_r(n)$ for all n sufficiently large, where $a_r, \lambda _r$ are rational constants and $c_r : {\mathbf Z}/m_r {\mathbf Z} \to {\mathbf Q}$ is a periodic function, depending on r and the tower. To provide evidence for these conjectures, we collect extensive experimental data based on new and more efficient algorithms for working with differentials on ${\mathbf Z}_p$-towers of curves, and we prove our conjectures in the case $p=2$ and $r=1$.
Let K be a number field, let A be a finite-dimensional K-algebra, let $\operatorname {\mathrm {J}}(A)$ denote the Jacobson radical of A and let $\Lambda $ be an $\mathcal {O}_{K}$-order in A. Suppose that each simple component of the semisimple K-algebra $A/{\operatorname {\mathrm {J}}(A)}$ is isomorphic to a matrix ring over a field. Under this hypothesis on A, we give an algorithm that, given two $\Lambda $-lattices X and Y, determines whether X and Y are isomorphic and, if so, computes an explicit isomorphism $X \rightarrow Y$. This algorithm reduces the problem to standard problems in computational algebra and algorithmic algebraic number theory in polynomial time. As an application, we give an algorithm for the following long-standing problem: Given a number field K, a positive integer n and two matrices $A,B \in \mathrm {Mat}_{n}(\mathcal {O}_{K})$, determine whether A and B are similar over $\mathcal {O}_{K}$, and if so, return a matrix $C \in \mathrm {GL}_{n}(\mathcal {O}_{K})$ such that $B= CAC^{-1}$. We give explicit examples that show that the implementation of the latter algorithm for $\mathcal {O}_{K}=\mathbb {Z}$ vastly outperforms implementations of all previous algorithms, as predicted by our complexity analysis.
By analogy with the trace of an algebraic integer $\alpha $ with conjugates $\alpha _1=\alpha , \ldots , \alpha _d$, we define the G-measure$ {\mathrm {G}} (\alpha )= \sum _{i=1}^d ( |\alpha _i| + 1/ | \alpha _i | )$ and the absolute${\mathrm G}$-measure${\mathrm {g}}(\alpha )={\mathrm {G}}(\alpha )/d$. We establish an analogue of the Schur–Siegel–Smyth trace problem for totally positive algebraic integers. Then we consider the case where $\alpha $ has all its conjugates in a sector $| \arg z | \leq \theta $, $0 < \theta < 90^{\circ }$. We compute the greatest lower bound $c(\theta )$ of the absolute G-measure of $\alpha $, for $\alpha $ belonging to $11$ consecutive subintervals of $]0, 90 [$. This phenomenon appears here for the first time, conforming to a conjecture of Rhin and Smyth on the nature of the function $c(\theta )$. All computations are done by the method of explicit auxiliary functions.
Let $\alpha $ be a totally positive algebraic integer of degree d, with conjugates $\alpha _1=\alpha , \alpha _2, \ldots , \alpha _d$. The absolute $S_k$-measure of $\alpha $ is defined by $s_k(\alpha )= d^{-1} \sum _{i=1}^{d}\alpha _i^k$. We compute the lower bounds $\upsilon _k$ of $s_k(\alpha )$ for each integer in the range $2\leq k \leq 15$ and give a conjecture on the results for integers $k>15$. Then we derive the lower bounds of $s_k(\alpha )$ for all real numbers $k>2$. Our computation is based on an improvement in the application of the LLL algorithm and analysis of the polynomials in the explicit auxiliary functions.
Let $f(x)=x^{6}+ax^{4}+bx^{2}+c$ be an irreducible sextic polynomial with coefficients from a field $F$ of characteristic $\neq 2$, and let $g(x)=x^{3}+ax^{2}+bx+c$. We show how to identify the conjugacy class in $S_{6}$ of the Galois group of $f$ over $F$ using only the discriminants of $f$ and $g$ and the reducibility of a related sextic polynomial. We demonstrate that our method is useful for producing one-parameter families of even sextic polynomials with a specified Galois group.
Inspired by methods of N. P. Smart, we describe an algorithm to determine all Picard curves over $\mathbb{Q}$ with good reduction away from 3, up to $\mathbb{Q}$-isomorphism. A correspondence between the isomorphism classes of such curves and certain quintic binary forms possessing a rational linear factor is established. An exhaustive list of integral models is determined and an application to a question of Ihara is discussed.
Consider two ordinary elliptic curves $E,E^{\prime }$ defined over a finite field $\mathbb{F}_{q}$, and suppose that there exists an isogeny $\unicode[STIX]{x1D713}$ between $E$ and $E^{\prime }$. We propose an algorithm that determines $\unicode[STIX]{x1D713}$ from the knowledge of $E$, $E^{\prime }$ and of its degree $r$, by using the structure of the $\ell$-torsion of the curves (where $\ell$ is a prime different from the characteristic $p$ of the base field). Our approach is inspired by a previous algorithm due to Couveignes, which involved computations using the $p$-torsion on the curves. The most refined version of that algorithm, due to De Feo, has a complexity of $\tilde{O} (r^{2})p^{O(1)}$ base field operations. On the other hand, the cost of our algorithm is $\tilde{O} (r^{2})\log (q)^{O(1)}$, for a large class of inputs; this makes it an interesting alternative for the medium- and large-characteristic cases.
In this paper we describe how to compute smallest monic polynomials that define a given number field $\mathbb{K}$. We make use of the one-to-one correspondence between monic defining polynomials of $\mathbb{K}$ and algebraic integers that generate $\mathbb{K}$. Thus, a smallest polynomial corresponds to a vector in the lattice of integers of $\mathbb{K}$ and this vector is short in some sense. The main idea is to consider weighted coordinates for the vectors of the lattice of integers of $\mathbb{K}$. This allows us to find the desired polynomial by enumerating short vectors in these weighted lattices. In the context of the subexponential algorithm of Biasse and Fieker for computing class groups, this algorithm can be used as a precomputation step that speeds up the rest of the computation. It also widens the applicability of their faster conditional method, which requires a defining polynomial of small height, to a much larger set of number field descriptions.
In order to assess the security of cryptosystems based on the discrete logarithm problem in non-prime finite fields, as are the torus-based or pairing-based ones, we investigate thoroughly the case in $\mathbb{F}_{p^{6}}$ with the number field sieve. We provide new insights, improvements, and comparisons between different methods to select polynomials intended for a sieve in dimension 3 using a special-$\mathfrak{q}$ strategy. We also take into account the Galois action to increase the relation productivity of the sieving phase. To validate our results, we ran several experiments and real computations for various polynomial selection methods and field sizes with our publicly available implementation of the sieve in dimension 3, with special-$\mathfrak{q}$ and various enumeration strategies.
Primitive prime divisors play an important role in group theory and number theory. We study a certain number-theoretic quantity, called $\unicode[STIX]{x1D6F7}_{n}^{\ast }(q)$, which is closely related to the cyclotomic polynomial $\unicode[STIX]{x1D6F7}_{n}(x)$ and to primitive prime divisors of $q^{n}-1$. Our definition of $\unicode[STIX]{x1D6F7}_{n}^{\ast }(q)$ is novel, and we prove it is equivalent to the definition given by Hering. Given positive constants $c$ and $k$, we provide an algorithm for determining all pairs $(n,q)$ with $\unicode[STIX]{x1D6F7}_{n}^{\ast }(q)\leq cn^{k}$. This algorithm is used to extend (and correct) a result of Hering and is useful for classifying certain families of subgroups of finite linear groups.
We prove that formal Fourier Jacobi expansions of degree two are Siegel modular forms. As a corollary, we deduce modularity of the generating function of special cycles of codimension two, which were defined by Kudla. A second application is the proof of termination of an algorithm to compute Fourier expansions of arbitrary Siegel modular forms of degree two. Combining both results enables us to determine relations of special cycles in the second Chow group.
Until recently, the ‘plus part’ of the class numbers of cyclotomic fields had only been determined for fields of root discriminant small enough to be treated by Odlyzko’s discriminant bounds.
However, by finding lower bounds for sums over prime ideals of the Hilbert class field, we can now establish upper bounds for class numbers of fields of larger discriminant. This new analytic upper bound, together with algebraic arguments concerning the divisibility properties of class numbers, allows us to unconditionally determine the class numbers of many cyclotomic fields that had previously been untreatable by any known method.
In this paper, we study in particular the cyclotomic fields of composite conductor.