To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a stochastic model, called the replicator coalescent, describing a system of blocks of k different types that undergo pairwise mergers at rates depending on the block types: with rate $C_{ij}\geq 0$ blocks of type i and j merge, resulting in a single block of type i. The replicator coalescent can be seen as a generalisation of Kingman’s coalescent death chain in a multi-type setting, although without an underpinning exchangeable partition structure. The name is derived from a remarkable connection between the instantaneous dynamics of this multi-type coalescent when issued from an arbitrarily large number of blocks, and the so-called replicator equations from evolutionary game theory. By dilating time arbitrarily close to zero, we see that initially, on coming down from infinity, the replicator coalescent behaves like the solution to a certain replicator equation. Thereafter, stochastic effects are felt and the process evolves more in the spirit of a multi-type death chain.
Random bridges have gained significant attention in recent years due to their potential applications in various areas, particularly in information-based asset pricing models. This paper aims to explore the potential influence of the pinning point’s distribution on the memorylessness and stochastic dynamics of the bridge process. We introduce Lévy bridges with random length and random pinning points, and analyze their Markov property. Our study demonstrates that the Markov property of Lévy bridges depends on the nature of the distribution of their pinning points. The law of any random variables can be decomposed into singular continuous, discrete, and absolutely continuous parts with respect to the Lebesgue measure (Lebesgue’s decomposition theorem). We show that the Markov property holds when the pinning points’ law does not have an absolutely continuous part. Conversely, the Lévy bridge fails to exhibit Markovian behavior when the pinning point has an absolutely continuous part.
We consider the asset price as the weak solution to a stochastic differential equation driven by both a Brownian motion and the counting process martingale whose predictable compensator follows shot-noise and Hawkes processes. In this framework, we discuss the Esscher martingale measure where the conditions for its existence are detailed. This generalizes certain relationships not yet encountered in the literature.
We consider residue expansions for survival and density/mass functions of first-passage distributions in finite-state semi-Markov processes (SMPs) in continuous and integer time. Conditions are given which guarantee that the residue expansions for these functions have a dominant exponential/geometric term. The key condition assumes that the relevant states for first passage contain an irreducible class, thus ensuring the same sort of dominant exponential/geometric terms as one gets for phase-type distributions in Markov processes. Essentially, the presence of an irreducible class along with some other conditions ensures that the boundary singularity b for the moment generating function (MGF) of the first-passage-time distribution is a simple pole. In the continuous-time setting we prove that b is a dominant pole, in that the MGF has no other pole on the vertical line $\{\text{Re}(s)=b\}.$ In integer time we prove that b is dominant if all holding-time mass functions for the SMP are aperiodic and non-degenerate. The expansions and pole characterisations address first passage to a single new state or a subset of new states, and first return to the starting state. Numerical examples demonstrate that the residue expansions are considerably more accurate than saddlepoint approximations and can provide a substitute for exact computation above the 75th percentile.
The signature of a path can be described as its full non-commutative exponential. Following T. Lyons, we regard its expectation, the expected signature, as a path space analogue of the classical moment generating function. The logarithm thereof, taken in the tensor algebra, defines the signature cumulant. We establish a universal functional relation in a general semimartingale context. Our work exhibits the importance of Magnus expansions in the algorithmic problem of computing expected signature cumulants and further offers a far-reaching generalization of recent results on characteristic exponents dubbed diamond and cumulant expansions with motivations ranging from financial mathematics to statistical physics. From an affine semimartingale perspective, the functional relation may be interpreted as a type of generalized Riccati equation.
We give a new method of proof for a result of D. Pierre-Loti-Viaud and P. Boulongne which can be seen as a generalization of a characterization of Poisson law due to Rényi and Srivastava. We also provide explicit formulas, in terms of Bell polynomials, for the moments of the compound distributions occurring in the extended collective model in non-life insurance.
Draw-down time for a stochastic process is the first passage time of a draw-down level that depends on the previous maximum of the process. In this paper we study the draw-down-related Parisian ruin problem for spectrally negative Lévy risk processes. Intuitively, a draw-down Parisian ruin occurs when the surplus process has continuously stayed below the dynamic draw-down level for a fixed amount of time. We introduce the draw-down Parisian ruin time and solve the corresponding two-sided exit problems via excursion theory. We also find an expression for the potential measure for the process killed at the draw-down Parisian time. As applications, we obtain new results for spectrally negative Lévy risk processes with dividend barrier and with Parisian ruin.
One of the approaches to the Riemann Hypothesis is the Nyman–Beurling criterion. Cotangent sums play a significant role in this criterion. Here we investigate the values of these cotangent sums for various shifts of the argument.
In this paper we investigate the link between the joint law of a d-dimensional random vector and the law of some of its multivariate marginals. We introduce and focus on a class of distributions, that we call projective, for which we give detailed properties. This allows us to obtain necessary conditions for a given construction to be projective. We illustrate our results by proposing some theoretical projective distributions, as elliptical distributions or a new class of distribution having given bivariate margins. In the case where the data does not necessarily correspond to a projective distribution, we also explain how to build proper distributions while checking that the distance to the prescribed projections is small enough.
For spectrally negative Lévy processes, we prove several fluctuation results involving a general draw-down time, which is a downward exit time from a dynamic level that depends on the running maximum of the process. In particular, we find expressions of the Laplace transforms for the two-sided exit problems involving the draw-down time. We also find the Laplace transforms for the hitting time and creeping time over the running-maximum related draw-down level, respectively, and obtain an expression for a draw-down associated potential measure. The results are expressed in terms of scale functions for the spectrally negative Lévy processes.
Transform inversions, in which density and survival functions are computed from their associated moment generating function $\mathcal{M}$, have largely been based on methods which use values of $\mathcal{M}$ in its convergence region. Prominent among such methods are saddlepoint approximations and Fourier-series inversion methods, including the fast Fourier transform. In this paper we propose inversion methods which make use of values for $\mathcal{M}$ which lie outside of its convergence region and in its analytic continuation. We focus on the simplest and perhaps richest setting for applications in which $\mathcal{M}$ is either a meromorphic function in its analytic continuation, so that all of its singularities are poles, or else the singularities are isolated essential. Asymptotic expansions of finite- and infinite-orders are developed for density and survival functions using the poles of $\mathcal{M}$ in its analytic continuation. For finite-order expansions, the expansion error is a contour integral in the analytic continuation, which we approximate using the saddlepoint method based on following the path of steepest descent. Such saddlepoint error approximations accurately determine expansion errors and, thus, provide the means for determining the order of the expansion needed to achieve some preset accuracy. They also provide an additive correction term which increases accuracy of the expansion. Further accuracy is achieved by computing the expansion errors numerically using a contour path which ultimately tracks the steepest descent direction. Important applications include Wilks’ likelihood ratio test in MANOVA, compound distributions, and the Sparre Andersen and Cramér–Lundberg ruin models.
The aim of this paper is to find a formula for the double Laplace transform of the truncated variation of a Brownian motion with drift. In order to find the double Laplace transform, we also prove some identities for the Brownian motion with drift, which may be of independent interest.
Let (X1,...,Xn) be multivariate normal, with mean vector 𝛍 and covariance matrix 𝚺, and let Sn=eX1+⋯+eXn. The Laplace transform ℒ(θ)=𝔼e-θSn∝∫exp{-hθ(𝒙)}d𝒙 is represented as ℒ̃(θ)I(θ), where ℒ̃(θ) is given in closed form and I(θ) is the error factor (≈1). We obtain ℒ̃(θ) by replacing hθ(𝒙) with a second-order Taylor expansion around its minimiser 𝒙*. An algorithm for calculating the asymptotic expansion of 𝒙* is presented, and it is shown that I(θ)→ 1 as θ→∞. A variety of numerical methods for evaluating I(θ) is discussed, including Monte Carlo with importance sampling and quasi-Monte Carlo. Numerical examples (including Laplace-transform inversion for the density of Sn) are also given.
We take a fresh look at the classical problem of runs in a sequence of independent and identically distributed coin tosses and derive a general identity/recursion which can be used to compute (joint) distributions of functionals of run types. This generalizes and unifies already existing approaches. We give several examples, derive asymptotics, and pose some further questions.
We derive multivariate moment generating functions for the conditional and stationary distributions of a discrete sample path of n observations of a square-root diffusion (CIR) process, X(t). For any fixed vector of observation times t1,…,tn, we find the conditional joint distribution of (X(t1),…,X(tn)) is a multivariate noncentral chi-squared distribution and the stationary joint distribution is a Krishnamoorthy-Parthasarathy multivariate gamma distribution. Multivariate cumulants of the stationary distribution have a simple and computationally tractable expression. We also obtain the moment generating function for the increment X(t + δ) - X(t), and show that the increment is equivalent in distribution to a scaled difference of two independent draws from a gamma distribution.
This paper is concerned with the class of distributions, continuous or discrete, whose shape is monotone of finite integer order t. A characterization is presented as a mixture of a minimum of tindependent uniform distributions. Then, a comparison of t-monotone distributions is made using the s-convex stochastic orders. A link is also pointed out with an alternative approach to monotonicity based on a stationary-excess operator. Finally, the monotonicity property is exploited to reinforce the classical Markov and Lyapunov inequalities. The results are illustrated by several applications to insurance.
We consider the problem of efficient simulation estimation of the density function at the tails, and the probability of large deviations for a sum of independent, identically distributed (i.i.d.), light-tailed, and nonlattice random vectors. The latter problem besides being of independent interest, also forms a building block for more complex rare event problems that arise, for instance, in queueing and financial credit risk modeling. It has been extensively studied in the literature where state-independent, exponential-twisting-based importance sampling has been shown to be asymptotically efficient and a more nuanced state-dependent exponential twisting has been shown to have a stronger bounded relative error property. We exploit the saddle-point-based representations that exist for these rare quantities, which rely on inverting the characteristic functions of the underlying random vectors. These representations reduce the rare event estimation problem to evaluating certain integrals, which may via importance sampling be represented as expectations. Furthermore, it is easy to identify and approximate the zero-variance importance sampling distribution to estimate these integrals. We identify such importance sampling measures and show that they possess the asymptotically vanishing relative error property that is stronger than the bounded relative error property. To illustrate the broader applicability of the proposed methodology, we extend it to develop an asymptotically vanishing relative error estimator for the practically important expected overshoot of sums of i.i.d. random variables.
In this note we compute the Laplace transform of hitting times, to fixed levels, of integrated geometric Brownian motion. The transform is expressed in terms of the gamma and confluent hypergeometric functions. Using a simple Itô transformation and standard results on hitting times of diffusion processes, the transform is characterized as the solution to a linear second-order ordinary differential equation which, modulo a change of variables, is equivalent to Kummer's equation.
We study a family of distributions that satisfy the stability-under-addition property, provided that the number ν of random variables in a sum is also a random variable. We call the corresponding property ν-stability and investigate the situation when the semigroup generated by the generating function of ν is commutative. Using results from the theory of iterations of analytic functions, we describe ν-stable distributions generated by summations with rational generating functions. A new case in this class of distributions arises when generating functions are linked with Chebyshev polynomials. The analogue of normal distribution corresponds to the hyperbolic secant distribution.