To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, a new multivariate counting process model (called Multivariate Poisson Generalized Gamma Process) is developed and its main properties are studied. Some basic stochastic properties of the number of events in the new multivariate counting process are initially derived. It is shown that this new multivariate counting process model includes the multivariate generalized Pólya process as a special case. The dependence structure of the multivariate counting process model is discussed. Some results on multivariate stochastic comparisons are also obtained.
An extension of Shannon’s entropy power inequality when one of the summands is Gaussian was provided by Costa in 1985, known as Costa’s concavity inequality. We consider the additive Gaussian noise channel with a more realistic assumption, i.e. the input and noise components are not independent and their dependence structure follows the well-known multivariate Gaussian copula. Two generalizations for the first- and second-order derivatives of the differential entropy of the output signal for dependent multivariate random variables are derived. It is shown that some previous results in the literature are particular versions of our results. Using these derivatives, concavity of the entropy power, under certain mild conditions, is proved. Finally, special one-dimensional versions of our general results are described which indeed reveal an extension of the one-dimensional case of Costa’s concavity inequality to the dependent case. An illustrative example is also presented.
In this paper, we consider an extended class of univariate and multivariate generalized Pólya processes and study its properties. In the generalized Pólya process considered in [8], each occurrence of an event increases the stochastic intensity of the counting process. In the extended class studied in this paper, on the contrary, it decreases the stochastic intensity of the process, which induces a kind of negative dependence in the increments in the disjoint time intervals. First, we define the extended class of generalized Pólya processes and derive some preliminary results which will be used in the remaining part of the paper. It is seen that the extended class of generalized Pólya processes can be viewed as generalized pure death processes, where the death rate depends on both the state and the time. Based on the preliminary results, the main properties of the multivariate extended generalized Pólya process and meaningful characterizations are obtained. Finally, possible applications to reliability modeling are briefly discussed.
In this paper, to model cascading failures, a new stochastic failure model is proposed. In a system subject to cascading failures, after each failure of the component, the remaining component suffers from increased load or stress. This results in shortened residual lifetimes of the remaining components. In this paper, to model this effect, the concept of the usual stochastic order is employed along with the accelerated life test model, and a new general class of stochastic failure models is generated.
We consider the problem of estimating the rate of defects (mean number of defects per item), given the counts of defects detected by two independent imperfect inspectors on one sample of items. In contrast with the setting for the well-known method of Capture–Recapture, we do not have information regarding the number of defects jointly detected by both inspectors. We solve this problem by constructing two types of estimators—a simple moment-type estimator, and a complicated maximum-likelihood (ML) estimator. The performance of these estimators is studied analytically and by means of simulations. It is shown that the ML estimator is superior to the moment-type estimator. A systematic comparison with the Capture–Recapture method is also made.
This work investigates analytically, the use of piezoelectric tiles placed on stairways for vibrational energy harvesting – harnessing electrical power from natural vibrational phenomena – from pedestrian footfalls. While energy harvesting from pedestrian traffic along flat pathways has been studied in the linear regime and realised in practical applications, the greater amounts of energy naturally expended in traversing stairways suggest better prospects for harvesting. Considering the characteristics of two types of commercially available piezoelectric tiles – Navy Type III and Navy Type V – analytical models for the coupled electromechanical system are formulated. The harvesting potential of the tiles is then studied under conditions of both deterministic and carefully developed random excitation profiles for three distinct cases: linear, monostable nonlinear and an array of monostable nonlinear tiles on adjacent steps with linear coupling between them. The results indicate enhanced power output when the tiles are: (1) placed on stairways, (2) uncoupled and (3) subjected to excitation profiles with stochastic frequency. In addition, the Navy Type V tiles are seen to outperform the Navy Type III tiles. Finally, the strongly nonlinear regime outperforms the linear one suggesting that the realisation of commercially available piezoelectric tiles with appropriately tailored nonlinear characteristics will likely have a significant impact on energy harvesting from pedestrian traffic.
This article addresses the resolution of the inverse problem for the parameter identification in orthotropic materials with a number of measurements merely on the boundaries. The inverse problem is formulated as an optimization problem of a residual functional which evaluates the differences between the experimental and predicted displacements. The singular boundary method, an integration-free, mathematically simple and boundary-only meshless method, is employed to numerically determine the predicted displacements. The residual functional is minimized by the Levenberg-Marquardt method. Three numerical examples are carried out to illustrate the robustness, efficiency, and accuracy of the proposed scheme. In addition, different levels of noise are added into the boundary conditions to verify the stability of the present methodology.
In this paper we define and study a new class of multivariate counting processes, named `multivariate generalized Pólya process'. Initially, we define and study the bivariate generalized Pólya process and briefly discuss its reliability application. In order to derive the main properties of the process, we suggest some key properties and an important characterization of the process. Due to these properties and the characterization, the main properties of the bivariate generalized Pólya process are obtained efficiently. The marginal processes of the multivariate generalized Pólya process are shown to be the univariate generalized Pólya processes studied in Cha (2014). Given the history of a marginal process, the conditional property of the other process is also discussed. The bivariate generalized Pólya process is extended to the multivariate case. We define a new dependence concept for multivariate point processes and, based on it, we analyze the dependence structure of the multivariate generalized Pólya process.
In this paper a stochastic failure model for a system with stochastically dependent competing failures is analyzed. The system is subject to two types of failure: degradation failure and catastrophic failure. Both types of failure share an initial common source: an external shock process. This implies that they are stochastically dependent. In our developments of the model, the type of dependency between the two kinds of failure will be characterized. Conditional properties of the two competing risks are also investigated. These properties are the fundamental basis for the development of the maintenance strategy studied in this paper. Considering this maintenance strategy, the long-run average cost rate is derived and the optimal maintenance policy is discussed.
Burn-in is a method of ‘elimination’ of initial failures (infant mortality). In the conventional burn-in procedures, to burn-in a component or a system means to subject it to a fixed time period of simulated use prior to actual operation. Then those which fail during the burn-in procedure are scrapped and only those which survived the burn-in procedure are considered to be of satisfactory quality. Thus, in this case, the only information used for the elimination procedure is the lifetime of the corresponding item. In this paper we consider a new burn-in procedure which additionally employs a dependent covariate process in the elimination procedure. Through the comparison with the conventional burn-in procedure, we show that the new burn-in procedure is preferable under commonly satisfied conditions. The problem of determining the optimal burn-in parameters is also considered and the properties of the optimal parameters are derived. A numerical example is provided to illustrate the theoretical results obtained in this paper.
In this paper some important properties of the generalized Pólya process are derived and their applications are discussed. The generalized Pólya process is defined based on the stochastic intensity. By interpreting the defined stochastic intensity of the generalized Pólya process, the restarting property of the process is discussed. Based on the restarting property of the process, the joint distribution of the number of events is derived and the conditional joint distribution of the arrival times is also obtained. In addition, some properties of the compound process defined for the generalized Pólya process are derived. Furthermore, a new type of repair is defined based on the process and its application to the area of reliability is discussed. Several examples illustrating the applications of the obtained properties to various areas are suggested.
Environmental stress screening (ESS) of manufactured items is used to reduce the occurrence of future failures that are caused by latent defects by eliminating the items with these defects. Some practical descriptions of the relevant ESS procedures can be found in the literature; however, the appropriate stochastic modeling and the corresponding thorough analysis have not been reported. In this paper we develop a stochastic model for the ESS, analyze the effect of this operation on the population characteristics of the screened items, and also consider the relevant optimization issues.
In reliability a number of failure processes for repairable items are described by point processes, depending on the types of repairs being performed on failures of items. In this paper we describe the failure processes of repairable items from heterogeneous populations and study the stochastic predictions of future processes which utilize the failure/repair history. Two types of repair processes, perfect and minimal repair processes, will be considered. The results will be derived under a general stochastic formulation/setting. Applications of the obtained results to many different areas will be discussed and, specifically, some reliability applications will be illustrated in detail.
Web servers have to be protected against overload since overload can lead to a server breakdown, which in turn causes high response times and low throughput. In this paper, a stochastic model for breakdowns of server systems due to overload is proposed and an admission control policy which protects Web servers by controlling the amount and rate of work entering the system is studied. Requests from the clients arrive at the server following a nonhomogeneous Poisson process and each requested job takes a random time to be completed. It is assumed that the breakdown rate of the server depends on the number of jobs which are currently being performed by the server. Based on the proposed model, the reliability function and the breakdown rate function of the server system are derived. Furthermore, the long-run expected number of jobs completed per unit time is derived as the efficiency measure, and the optimal admission control policy which maximizes the efficiency will be discussed.
In extreme shock models, only the impact of the current, possibly fatal shock is usually taken into account, whereas in cumulative shock models, the impact of the preceding shocks is accumulated as well. A shock model which combines these two types is called a ‘combined shock model’. In this paper we study new classes of extreme shock models and, based on the obtained results and model interpretations, we extend these results to several specific combined shock models. For systems subject to nonhomogeneous Poisson processes of shocks, we derive the corresponding survival probabilities and discuss some meaningful interpretations and examples.
In extreme shock models, only the impact of the current, possibly fatal shock is usually taken into account, whereas in cumulative shock models, the impact of the preceding shocks is accumulated as well. In this paper we combine an extreme shock model with a specific cumulative shock model. It is shown that the proposed setting can also be interpreted as a generalization of the well-known Brown–Proschan model that describes repair actions for repairable systems. For a system subject to a specific process of shocks, we derive the survival probability and the corresponding failure rate function. Some meaningful interpretations and examples are discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.