We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study scaled topological entropy, scaled measure entropy, and scaled local entropy in the context of amenable group actions. In particular, a variational principle is established.
Let $(X,\mathcal {B},\mu ,T)$ be a probability-preserving system with X compact and T a homeomorphism. We show that if every point in $X\times X$ is two-sided recurrent, then $h_{\mu }(T)=0$, resolving a problem of Benjamin Weiss, and that if $h_{\mu }(T)=\infty $, then every full-measure set in X contains mean-asymptotic pairs (that is, the associated process is not tight), resolving a problem of Ornstein and Weiss.
We prove that every homeomorphism of a compact manifold with dimension one has zero topological emergence, whereas in dimension greater than one the topological emergence of a $C^0-$generic homeomorphism is maximal, equal to the dimension of the manifold. We also show that the metric emergence of a continuous self-map on compact metric space has the intermediate value property.
We study shift spaces over a finite alphabet that can be approximated by mixing shifts of finite type in the sense of (pseudo)metrics connected to Ornstein’s $\bar {d}$ metric ($\bar {d}$-approachable shift spaces). The class of $\bar {d}$-approachable shifts can be considered as a topological analog of measure-theoretical Bernoulli systems. The notion of $\bar {d}$-approachability, together with a closely connected notion of $\bar {d}$-shadowing, was introduced by Konieczny, Kupsa, and Kwietniak [Ergod. Th. & Dynam. Sys.43(3) (2023), 943–970]. These notions were developed with the aim of significantly generalizing specification properties. Indeed, many popular variants of the specification property, including the classic one and the almost/weak specification property, ensure $\bar {d}$-approachability and $\bar {d}$-shadowing. Here, we study further properties and connections between $\bar {d}$-shadowing and $\bar {d}$-approachability. We prove that $\bar {d}$-shadowing implies $\bar {d}$-stability (a notion recently introduced by Tim Austin). We show that for surjective shift spaces with the $\bar {d}$-shadowing property the Hausdorff pseudodistance ${\bar d}^{\mathrm {H}}$ between shift spaces induced by $\bar {d}$ is the same as the Hausdorff distance between their simplices of invariant measures with respect to the Hausdorff distance induced by Ornstein’s metric $\bar {d}$ between measures. We prove that without $\bar {d}$-shadowing this need not to be true (it is known that the former distance always bounds the latter). We provide examples illustrating these results, including minimal examples and proximal examples of shift spaces with the $\bar {d}$-shadowing property. The existence of such shift spaces was announced in the earlier paper mentioned above. It shows that $\bar {d}$-shadowing indeed generalizes the specification property.
Feng and Huang [Variational principle for weighted topological pressure. J. Math. Pures Appl. (9)106 (2016), 411–452] introduced weighted topological entropy and pressure for factor maps between dynamical systems and established its variational principle. Tsukamoto [New approach to weighted topological entropy and pressure. Ergod. Th. & Dynam. Sys.43 (2023), 1004–1034] redefined those invariants quite differently for the simplest case and showed via the variational principle that the two definitions coincide. We generalize Tsukamoto’s approach, redefine the weighted topological entropy and pressure for higher dimensions, and prove the variational principle. Our result allows for an elementary calculation of the Hausdorff dimension of affine-invariant sets such as self-affine sponges and certain sofic sets that reside in Euclidean space of arbitrary dimension.
For $\mathscr {B} \subseteq \mathbb {N} $, the $ \mathscr {B} $-free subshift $ X_{\eta } $ is the orbit closure of the characteristic function of the set of $ \mathscr {B} $-free integers. We show that many results about invariant measures and entropy, previously only known for the hereditary closure of $ X_{\eta } $, have their analogues for $ X_{\eta } $ as well. In particular, we settle in the affirmative a conjecture of Keller about a description of such measures [G. Keller. Generalized heredity in $\mathcal B$-free systems. Stoch. Dyn.21(3) (2021), Paper No. 2140008]. A central assumption in our work is that $\eta ^{*} $ (the Toeplitz sequence that generates the unique minimal component of $ X_{\eta } $) is regular. From this, we obtain natural periodic approximations that we frequently use in our proofs to bound the elements in $ X_{\eta } $ from above and below.
We find sufficient conditions for bounded density shifts to have a unique measure of maximal entropy. We also prove that every measure of maximal entropy of a bounded density shift is fully supported. As a consequence of this, we obtain that bounded density shifts are surjunctive.
Given a locally finite graph $\Gamma $, an amenable subgroup G of graph automorphisms acting freely and almost transitively on its vertices, and a G-invariant activity function $\unicode{x3bb} $, consider the free energy $f_G(\Gamma ,\unicode{x3bb} )$ of the hardcore model defined on the set of independent sets in $\Gamma $ weighted by $\unicode{x3bb} $. Under the assumption that G is finitely generated and its word problem can be solved in exponential time, we define suitable ensembles of hardcore models and prove the following: if $\|\unicode{x3bb} \|_\infty < \unicode{x3bb} _c(\Delta )$, there exists a randomized $\epsilon $-additive approximation scheme for $f_G(\Gamma ,\unicode{x3bb} )$ that runs in time $\mathrm {poly}((1+\epsilon ^{-1})\lvert \Gamma /G \rvert )$, where $\unicode{x3bb} _c(\Delta )$ denotes the critical activity on the $\Delta $-regular tree. In addition, if G has a finite index linearly ordered subgroup such that its algebraic past can be decided in exponential time, we show that the algorithm can be chosen to be deterministic. However, we observe that if $\|\unicode{x3bb} \|_\infty> \unicode{x3bb} _c(\Delta )$, there is no efficient approximation scheme, unless $\mathrm {NP} = \mathrm {RP}$. This recovers the computational phase transition for the partition function of the hardcore model on finite graphs and provides an extension to the infinite setting. As an application in symbolic dynamics, we use these results to develop efficient approximation algorithms for the topological entropy of subshifts of finite type with enough safe symbols, we obtain a representation formula of pressure in terms of random trees of self-avoiding walks, and we provide new conditions for the uniqueness of the measure of maximal entropy based on the connective constant of a particular associated graph.
Given a subshift $\Sigma $ of finite type and a finite set S of finite words, let $\Sigma \langle S\rangle $ denote the subshift of $\Sigma $ that avoids S. We establish a general criterion under which we can bound the entropy perturbation $h(\Sigma ) - h(\Sigma \langle S\rangle )$ from above. As an application, we prove that this entropy difference tends to zero with a sequence of such sets $S_1, S_2,\ldots $ under various assumptions on the $S_i$.
Let G be a countably infinite discrete amenable group. It should be noted that a G-system $(X,G)$ naturally induces a G-system $(\mathcal {M}(X),G)$, where $\mathcal {M}(X)$ denotes the space of Borel probability measures on the compact metric space X endowed with the weak*-topology. A factor map $\pi : (X,G)\to (Y,G)$ between two G-systems induces a factor map $\widetilde {\pi }:(\mathcal {M}(X),G)\to (\mathcal {M}(Y),G)$. It turns out that $\widetilde {\pi }$ is open if and only if $\pi $ is open. When Y is fully supported, it is shown that $\pi $ has relative uniformly positive entropy if and only if $\widetilde {\pi }$ has relative uniformly positive entropy.
In this paper, we address the problem of computing the topological entropy of a map $\psi : G \to G$, where G is a Lie group, given by some power $\psi (g) = g^k$, with k a positive integer. When G is abelian, $\psi $ is an endomorphism and its topological entropy is given by $h(\psi ) = \dim (T(G)) \log (k)$, where $T(G)$ is the maximal torus of G, as shown by Patrão [The topological entropy of endomorphisms of Lie groups. Israel J. Math.234 (2019), 55–80]. However, when G is not abelian, $\psi $ is no longer an endomorphism and these previous results cannot be used. Still, $\psi $ has some interesting symmetries, for example, it commutes with the conjugations of G. In this paper, the structure theory of Lie groups is used to show that $h(\psi ) = \dim (T)\log (k)$, where T is a maximal torus of G, generalizing the formula in the abelian case. In particular, the topological entropy of powers on compact Lie groups with discrete center is always positive, in contrast to what happens to endomorphisms of such groups, which always have null entropy.
We prove an explicit characterization of the points in Thurston’s Master Teapot, which can be implemented algorithmically to test whether a point in $\mathbb {C}\times \mathbb {R}$ belongs to the complement of the Master Teapot. As an application, we show that the intersection of the Master Teapot with the unit cylinder is not symmetrical under reflection through the plane that is the product of the imaginary axis of $\mathbb {C}$ and $\mathbb {R}$.
We prove that any continuous function can be locally approximated at a fixed point $x_{0}$ by an uncountable family resistant to disruptions by the family of continuous functions for which $x_{0}$ is a fixed point. In that context, we also consider the property of quasicontinuity.
Let $k\geq 2$ and $(X_{i}, \mathcal {T}_{i}), i=1,\ldots ,k$, be $\mathbb {Z}^{d}$-actions topological dynamical systems with $\mathcal {T}_i:=\{T_i^{\textbf {g}}:X_i{\rightarrow } X_i\}_{\textbf {g}\in \mathbb {Z}^{d}}$, where $d\in \mathbb {N}$ and $f\in C(X_{1})$. Assume that for each $1\leq i\leq k-1$, $(X_{i+1}, \mathcal {T}_{i+1})$ is a factor of $(X_{i}, \mathcal {T}_{i})$. In this paper, we introduce the weighted topological pressure $P^{\textbf {a}}(\mathcal {T}_{1},f)$ and weighted measure-theoretic entropy $h_{\mu }^{\textbf {a}}(\mathcal {T}_{1})$ for $\mathbb {Z}^{d}$-actions, and establish a weighted variational principle as
This result not only generalizes some well-known variational principles about topological pressure for compact or non-compact sets, but also improves the variational principle for weighted topological pressure in [16] from $\mathbb {Z}_{+}$-action topological dynamical systems to $\mathbb {Z}^{d}$-actions topological dynamical systems.
In this work, we study the entropies of subsystems of shifts of finite type (SFTs) and sofic shifts on countable amenable groups. We prove that for any countable amenable group G, if X is a G-SFT with positive topological entropy $h(X)> 0$, then the entropies of the SFT subsystems of X are dense in the interval $[0, h(X)]$. In fact, we prove a ‘relative’ version of the same result: if X is a G-SFT and $Y \subset X$ is a subshift such that $h(Y) < h(X)$, then the entropies of the SFTs Z for which $Y \subset Z \subset X$ are dense in $[h(Y), h(X)]$. We also establish analogous results for sofic G-shifts.
We present several applications of the weak specification property and certain topological Markov properties, recently introduced by Barbieri, García-Ramos, and Li [Markovian properties of continuous group actions: algebraic actions, entropy and the homoclinic group. Adv. Math.397 (2022), 52], and implied by the pseudo-orbit tracing property, for general expansive group actions on compact spaces. First we show that any expansive action of a countable amenable group on a compact metrizable space satisfying the weak specification and strong topological Markov properties satisfies the Moore property, that is, every surjective endomorphism of such dynamical system is pre-injective. This together with an earlier result of Li (where the strong topological Markov property is not needed) of the Myhill property [Garden of Eden and specification. Ergod. Th. & Dynam. Sys.39 (2019), 3075–3088], which we also re-prove here, establishes the Garden of Eden theorem for all expansive actions of countable amenable groups on compact metrizable spaces satisfying the weak specification and strong topological Markov properties. We hint how to easily generalize this result even for uncountable amenable groups and general compact, not necessarily metrizable, spaces. Second, we generalize the recent result of Cohen [The large scale geometry of strongly aperiodic subshifts of finite type. Adv. Math.308 (2017), 599–626] that any subshift of finite type of a finitely generated group having at least two ends has weakly periodic points. We show that every expansive action of such a group having a certain Markov topological property, again implied by the pseudo-orbit tracing property, has a weakly periodic point. If it has additionally the weak specification property, the set of such points is dense.
We show that the complete positive entropy (CPE) class $\alpha $ of Barbieri and García-Ramos contains a one-dimensional subshift for all countable ordinals $\alpha $, that is, the process of alternating topological and transitive closure on the entropy pairs relation of a subshift can end on an arbitrary ordinal. This is the composition of three constructions. We first realize every ordinal as the length of an abstract ‘close-up’ process on a countable compact space. Next, we realize any abstract process on a compact zero-dimensional metrizable space as the process started from a shift-invariant relation on a subshift, the crucial construction being the implementation of every compact metrizable zero-dimensional space as an open invariant quotient of a subshift. Finally, we realize any shift-invariant relation E on a subshift X as the entropy pair relation of a supershift $Y \supset X$, and under strong technical assumptions, we can make the CPE process on Y end on the same ordinal as the close-up process of E.
In this paper, we show that each element in the convex hull of the rotation set of a compact invariant chain transitive set is realized by a Birkhoff solution, which is an improvement of the fundamental lemma of T. Zhou and W.-X. Qin [Pseudo solutions, rotation sets, and shadowing rotations for monotone recurrence relations. Math. Z.297 (2021), 1673–1692] in the study of rotation sets for monotone recurrence relations. We then investigate the properties of rotation sets assuming the system has zero topological entropy. The rotation set for a Birkhoff recurrence class is a singleton and the forward and backward rotation numbers are identical for each solution in the same Birkhoff recurrence class. We also show the continuity of rotation numbers on the set of non-wandering points. If the rotation set is upper-stable, then we show that each boundary point is a rational number, and we also obtain a result of bounded deviation.
A blender for a surface endomorphism is a hyperbolic basic set for which the union of the local unstable manifolds robustly contains an open set. Introduced by Bonatti and Díaz in the 1990s, blenders turned out to have many powerful applications to differentiable dynamics. In particular, a generalization in terms of jets, called parablenders, allowed Berger to prove the existence of generic families displaying robustly infinitely many sinks. In this paper we introduce analogous notions in a measurable setting. We define an almost blender as a hyperbolic basic set for which a prevalent perturbation has a local unstable set having positive Lebesgue measure. Almost parablenders are defined similarly in terms of jets. We study families of endomorphisms of $\mathbb {R}^2$ leaving invariant the continuation of a hyperbolic basic set. When an inequality involving the entropy and the maximal contraction along stable manifolds is satisfied, we obtain an almost blender or parablender. This answers partially a conjecture of Berger, and complements previous works on the construction of blenders by Avila, Crovisier, and Wilkinson or by Moreira and Silva. The proof is based on thermodynamic formalism: following works of Mihailescu, Simon, Solomyak, and Urbański, we study families of skew-products and we give conditions under which these maps have limit sets of positive measure inside their fibers.
We study approximation schemes for shift spaces over a finite alphabet using (pseudo)metrics connected to Ornstein’s ${\bar d}$ metric. This leads to a class of shift spaces we call ${\bar d}$-approachable. A shift space is ${\bar d}$-approachable when its canonical sequence of Markov approximations converges to it also in the ${\bar d}$ sense. We give a topological characterization of chain-mixing ${\bar d}$-approachable shift spaces. As an application we provide a new criterion for entropy density of ergodic measures. Entropy density of a shift space means that every invariant measure $\mu $ of such a shift space is the weak$^*$ limit of a sequence $\mu _n$ of ergodic measures with the corresponding sequence of entropies $h(\mu _n)$ converging to $h(\mu )$. We prove ergodic measures are entropy-dense for every shift space that can be approximated in the ${\bar d}$ pseudometric by a sequence of transitive sofic shifts. This criterion can be applied to many examples that were beyond the reach of previously known techniques including hereditary $\mathscr {B}$-free shifts and some minimal or proximal systems. The class of symbolic dynamical systems covered by our results includes also shift spaces where entropy density was established previously using the (almost) specification property.