We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We initiate a study of large deviations for block model random graphs in the dense regime. Following [14], we establish an LDP for dense block models, viewed as random graphons. As an application of our result, we study upper tail large deviations for homomorphism densities of regular graphs. We identify the existence of a ‘symmetric’ phase, where the graph, conditioned on the rare event, looks like a block model with the same block sizes as the generating graphon. In specific examples, we also identify the existence of a ‘symmetry breaking’ regime, where the conditional structure is not a block model with compatible dimensions. This identifies a ‘reentrant phase transition’ phenomenon for this problem – analogous to one established for Erdős–Rényi random graphs [13, 14]. Finally, extending the analysis of [34], we identify the precise boundary between the symmetry and symmetry breaking regimes for homomorphism densities of regular graphs and the operator norm on Erdős–Rényi bipartite graphs.
We provide two constructions of Gaussian random holomorphic sections of a Hermitian holomorphic line bundle $(L,h_{L})$ on a Hermitian complex manifold $(X,\Theta )$, that are particularly interesting in the case where the space of $\mathcal {L}^2$-holomorphic sections $H^{0}_{(2)}(X,L)$ is infinite dimensional. We first provide a general construction of Gaussian random holomorphic sections of L, which, if $H^{0}_{(2)}(X,L)$ is infinite dimensional, are almost never $\mathcal {L}^2$-integrable on X. The second construction combines the abstract Wiener space theory with the Berezin–Toeplitz quantization and yields a Gaussian ensemble of random $\mathcal {L}^2$-holomorphic sections. Furthermore, we study their random zeros in the context of semiclassical limits, including their distributions, large deviation estimates, local fluctuations and hole probabilities.
We study a version of the Busemann-Petty problem for $\log $-concave measures with an additional assumption on the dilates of convex, symmetric bodies. One of our main tools is an analog of the classical large deviation principle applied to $\log $-concave measures, depending on the norm of a convex body. We hope this will be of independent interest.
Computerized adaptive testing (CAT) is a sequential experiment design scheme that tailors the selection of experiments to each subject. Such a scheme measures subjects’ attributes (unknown parameters) more accurately than the regular prefixed design. In this paper, we consider CAT for diagnostic classification models, for which attribute estimation corresponds to a classification problem. After a review of existing methods, we propose an alternative criterion based on the asymptotic decay rate of the misclassification probabilities. The new criterion is then developed into new CAT algorithms, which are shown to achieve the asymptotically optimal misclassification rate. Simulation studies are conducted to compare the new approach with existing methods, demonstrating its effectiveness, even for moderate length tests.
We consider a one-dimensional superprocess with a supercritical local branching mechanism $\psi$, where particles move as a Brownian motion with drift $-\rho$ and are killed when they reach the origin. It is known that the process survives with positive probability if and only if $\rho<\sqrt{2\alpha}$, where $\alpha=-\psi'(0)$. When $\rho<\sqrt{2 \alpha}$, Kyprianou et al. [18] proved that $\lim_{t\to \infty}R_t/t =\sqrt{2\alpha}-\rho$ almost surely on the survival set, where $R_t$ is the rightmost position of the support at time t. Motivated by this work, we investigate its large deviation, in other words, the convergence rate of $\mathbb{P}_{\delta_x} (R_t >\gamma t+\theta)$ as $t \to \infty$, where $\gamma >\sqrt{2 \alpha} -\rho$, $\theta \ge 0$. As a by-product, a related Yaglom-type conditional limit theorem is obtained. Analogous results for branching Brownian motion can be found in Harris et al. [13].
In this paper, we study the estimation of a scale parameter from a sample of lifetimes of coherent systems with a fixed structure. We assume that the components are independent and identically distributed having a common distribution which belongs to a scale parameter family. Some results are obtained as well for dependent (exchangeable) components. To this end, we will use the representations for the distribution function of a coherent system based on signatures. We prove that the efficiency of the estimators depends on the structure of the system and on the scale parameter family. In the dependence case, it also depends on the baseline copula function.
We show that a piecewise monotonic map with positive topological entropy satisfies the level-2 large deviation principle with respect to the unique measure of maximal entropy under the conditions that the corresponding Markov diagram is irreducible and that the periodic measures of the map are dense in the set of ergodic measures. This result can apply to a broad class of piecewise monotonic maps, such as monotonic mod one transformations and piecewise monotonic maps with two monotonic pieces.
Detailed balance of a chemical reaction network can be defined in several different ways. Here we investigate the relationship among four types of detailed balance conditions: deterministic, stochastic, local, and zero-order local detailed balance. We show that the four types of detailed balance are equivalent when different reactions lead to different species changes and are not equivalent when some different reactions lead to the same species change. Under the condition of local detailed balance, we further show that the system has a global potential defined over the whole space, which plays a central role in the large deviation theory and the Freidlin–Wentzell-type metastability theory of chemical reaction networks. Finally, we provide a new sufficient condition for stochastic detailed balance, which is applied to construct a class of high-dimensional chemical reaction networks that both satisfies stochastic detailed balance and displays multistability.
In this paper, we consider functional limit theorems for Poisson cluster processes. We first present a maximal inequality for Poisson cluster processes. Then we establish a functional central limit theorem under the second moment and a functional moderate deviation principle under the Cramér condition for Poisson cluster processes. We apply these results to obtain a functional moderate deviation principle for linear Hawkes processes.
We extend the existing small-time asymptotics for implied volatilities under the Heston stochastic volatility model to the multifactor volatility Heston model, which is also known as the Wishart multidimensional stochastic volatility model (WMSV). More explicitly, we show that the approaches taken in Forde and Jacquier (2009) and Forde, Jacqiuer and Lee (2012) are applicable to the WMSV model under mild conditions, and obtain explicit small-time expansions of implied volatilities.
We consider point process convergence for sequences of independent and identically distributed random walks. The objective is to derive asymptotic theory for the largest extremes of these random walks. We show convergence of the maximum random walk to the Gumbel or the Fréchet distributions. The proofs depend heavily on precise large deviation results for sums of independent random variables with a finite moment generating function or with a subexponential distribution.
We investigate the concept of orbital free entropy from the viewpoint of the matrix liberation process. We will show that many basic questions around the definition of orbital free entropy are reduced to the question of full large deviation principle for the matrix liberation process. We will also obtain a large deviation upper bound for a certain family of random matrices that is essential to define the orbital free entropy. The resulting rate function is made up into a new approach to free mutual information.
For a multivariate random walk with independent and identically distributed jumps satisfying the Cramér moment condition and having mean vector with at least one negative component, we derive the exact asymptotics of the probability of ever hitting the positive orthant that is being translated to infinity along a fixed vector with positive components. This problem is motivated by and extends results of Avram et al. (2008) on a two-dimensional risk process. Our approach combines the large deviation techniques from a series of papers by Borovkov and Mogulskii from around 2000 with new auxiliary constructions, enabling us to extend their results on hitting remote sets with smooth boundaries to the case of boundaries with a ‘corner’ at the ‘most probable hitting point’. We also discuss how our results can be extended to the case of more general target sets.
The study of high-dimensional distributions is of interest in probability theory, statistics, and asymptotic convex geometry, where the object of interest is the uniform distribution on a convex set in high dimensions. The ℓp-spaces and norms are of particular interest in this setting. In this paper we establish a limit theorem for distributions on ℓp-spheres, conditioned on a rare event, in a high-dimensional geometric setting. As part of our proof, we establish a certain large deviation principle that is also relevant to the study of the tail behavior of random projections of ℓp-balls in a high-dimensional Euclidean space.
Let X be the constrained random walk on ℤ+2 having increments (1,0), (-1,1), and (0,-1) with respective probabilities λ, µ1, and µ2 representing the lengths of two tandem queues. We assume that X is stable and µ1≠µ2. Let τn be the first time when the sum of the components of X equals n. Let Y be the constrained random walk on ℤ×ℤ+ having increments (-1,0), (1,1), and (0,-1) with probabilities λ, µ1, and µ2. Let τ be the first time that the components of Y are equal to each other. We prove that Pn-xn(1),xn(2)(τ<∞) approximates pn(xn) with relative error exponentially decaying in n for xn=⌊nx⌋, x ∈ℝ+2, 0<x(1)+x(2)<1, x(1)>0. An affine transformation moving the origin to the point (n,0) and letting n→∞ connect the X and Y processes. We use a linear combination of basis functions constructed from single and conjugate points on a characteristic surface associated with X to derive a simple expression for ℙy(τ<∞) in terms of the utilization rates of the nodes. The proof that the relative error decays exponentially in n uses a sequence of subsolutions of a related Hamilton‒Jacobi‒Bellman equation on a manifold consisting of three copies of ℝ+2 glued to each other along the constraining boundaries. We indicate how the ideas of the paper can be generalized to more general processes and other exit boundaries.
Goldman (2010) proved that the distribution of a stationary determinantal point process (DPP) Φ can be coupled with its reduced Palm version Φ0,! such that there exists a point process η where Φ=Φ0,!∪η in distribution and Φ0,!∩η=∅. The points of η characterize the repulsive nature of a typical point of Φ. In this paper we use the first-moment measure of η to study the repulsive behavior of DPPs in high dimensions. We show that many families of DPPs have the property that the total number of points in η converges in probability to 0 as the space dimension n→∞. We also prove that for some DPPs, there exists an R∗ such that the decay of the first-moment measure of η is slowest in a small annulus around the sphere of radius √nR∗. This R∗ can be interpreted as the asymptotic reach of repulsion of the DPP. Examples of classes of DPP models exhibiting this behavior are presented and an application to high-dimensional Boolean models is given.
We continue the analysis of large deviations for randomly connected neural networks used as models of the brain. The originality of the model relies on the fact that the directed impact of one particle onto another depends on the state of both particles, and they have random Gaussian amplitude with mean and variance scaling as the inverse of the network size. Similarly to the spatially extended case (see Cabana and Touboul (2018)), we show that under sufficient regularity assumptions, the empirical measure satisfies a large deviations principle with a good rate function achieving its minimum at a unique probability measure, implying, in particular, its convergence in both averaged and quenched cases, as well as a propagation of a chaos property (in the averaged case only). The class of model we consider notably includes a stochastic version of the Kuramoto model with random connections.
In a series of two papers, we investigate the large deviations and asymptotic behavior of stochastic models of brain neural networks with random interaction coefficients. In this first paper, we take into account the spatial structure of the brain and consider first the presence of interaction delays that depend on the distance between cells and then the Gaussian random interaction amplitude with a mean and variance that depend on the position of the neurons and scale as the inverse of the network size. We show that the empirical measure satisfies a large deviations principle with a good rate function reaching its minimum at a unique spatially extended probability measure. This result implies an averaged convergence of the empirical measure and a propagation of chaos. The limit is characterized through a complex non-Markovian implicit equation in which the network interaction term is replaced by a nonlocal Gaussian process with a mean and covariance that depend on the statistics of the solution over the whole neural field.
By extending the methods of Peligrad et al. (2014), we establish exact moderate and large deviation asymptotics for linear random fields with independent innovations. These results are useful for studying nonparametric regression with random field errors and strong limit theorems.
In this paper we treat a pure death process coming down from infinity as a natural generalization of the death process associated with the Kingman coalescent. We establish a number of limit theorems including a strong law of large numbers and a large deviation theorem.