To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we give a complete, two-way characterization, of when a noncommutative crossed product $A \rtimes_\lambda G$ is simple, in the case of G being an FC-hypercentral group. This is a large class of amenable groups that contains all virtually nilpotent groups, and in the finitely generated setting, coincides with the set of groups which have polynomial growth. We further completely characterize the ideal intersection property under the assumption that the group is FC, meaning that every element has a finite conjugacy class. Finally, for minimal actions of arbitrary discrete groups on unital C*-algebras, we are able to characterize when the crossed product $A \rtimes_\lambda G$ is prime.
In this chapter all the basic notation and concepts are introduced.The notions of nilpotent, solvable, free, linear, finitely generated, and finitely presented groups are defined and examples are provided.Spaces of bounded and Lipschitz harmonic functions are defined, as well as harmonic functions of polynomial growths. Group actions are discussed and convolutions over abstract groups are defined.
The basic properties of Lie groups and related concepts are collected. This includes a discussion of coadjoint orbits and their symplectic structure, which helps to understand the semi-classical origin of imortant quantum spaces discussed in later chapters.
We define a notion of substitution on colored binary trees that we call substreetution. We show that a point fixed by a substreetution may (or not) be almost periodic, and thus the closure of the orbit under the $\mathbb {F}_{2}^{+}$-action may (or not) be minimal. We study one special example: we show that it belongs to the minimal case and that the number of preimages in the minimal set increases just exponentially fast, whereas it could be expected a super-exponential growth. We also give examples of periodic trees without invariant measures on their orbit. We use our construction to get quasi-periodic colored tilings of the hyperbolic disk.
Let $\alpha $ be a $C^{\infty }$ volume-preserving action on a closed n-manifold M by a lattice $\Gamma $ in $\mathrm {SL}(n,\mathbb {R})$, $n\ge 3$. Assume that there is an element $\gamma \in \Gamma $ such that $\alpha (\gamma )$ admits a dominated splitting. We prove that the manifold M is diffeomorphic to the torus ${{\mathbb T}^{n}={\mathbb R}^{n}/{\mathbb Z}^{n}}$ and $\alpha $ is smoothly conjugate to an affine action. Anosov diffeomorphisms and partial hyperbolic diffeomorphisms admit a dominated splitting. We obtained a topological global rigidity when $\alpha $ is $C^{1}$. We also prove similar theorems for actions on $2n$-manifolds by lattices in $\textrm {Sp}(2n,{\mathbb R})$ with $n\ge 2$ and $\mathrm {SO}(n,n)$ with $n\ge 5$.
We present a unified theory for the almost periodicity of functions with values in an arbitrary Banach space, measures and distributions via almost periodic elements for the action of a locally compact abelian group on a uniform topological space. We discuss the relation between Bohr- and Bochner-type almost periodicity, and similar conditions, and how the equivalence among such conditions relates to properties of the group action and the uniformity. We complete the paper by demonstrating how various examples considered earlier all fit in our framework.
Dold manifolds $P(m,n)$ are certain twisted complex projective space bundles over real projective spaces and serve as generators for the unoriented cobordism algebra of smooth manifolds. The paper investigates the structure of finite groups that act freely on products of Dold manifolds. It is proved that if a finite group G acts freely and $ \mathbb{Z}_2 $ cohomologically trivially on a finite CW-complex homotopy equivalent to ${\prod_{i=1}^{k} P(2m_i,n_i)}$, then $G\cong (\mathbb{Z}_2)^l$ for some $l\leq k$ (see Theorem A for the exact bound). We also determine some bounds in the case when for each i, ni is even and mi is arbitrary. As a consequence, the free rank of symmetry of these manifolds is determined for cohomologically trivial actions.
We prove that if a solvable group A acts coprimely on a solvable group G, then A has a relatively ‘large’ orbit in its corresponding action on the set of ordinary complex irreducible characters of G. This improves an earlier result of Keller and Yang [‘Orbits of finite solvable groups on characters’, Israel J. Math.199 (2014), 933–940].
It is an extremely well-established experimental fact that the speed of light is the same for all “inertial observers” (those who do not undergo accelerations). The analysis of the consequences of this remarkable fact has forced a complete revision of Newton’s ideas: Space and time are not different entities but are different aspects of one single entity, space-time. Different inertial observers may use different coordinates to describe the points of space-time, but these coordinates must be related in a way that preserves the speed of light. The changes of coordinates between observers form a group, the Lorentz group. To a large extent the mathematics of Special Relativity reduce to the study of this group. Physics appears to respect causality, a strong constraint in the presence of a finite speed of light. We introduce the Poincaré group, related to the Lorentz group. We develop Wigner’s idea that to each elementary particle is associated an irreducible unitary representation of the Poincaré group and we describe the representation corresponding to a spinless massive particle, explaining also how the physicists view these matters.
When a liberal-democratic state signs a treaty or wages a war, does its whole polity do those things? In this article, we approach this question via the recent social ontological literature on collective agency. We provide arguments that it does and that it does not. The arguments are presented via three considerations: the polity's control over what the state does; the polity's unity; and the influence of individual polity members. We suggest that the answer to our question differs for different liberal-democratic states and depends on two underlying considerations: (1) the amount of discretion held by the state's officeholders; (2) the extent to which the democratic procedure is deliberative rather than aggregative.
Let n be a positive integer and let $\mathbb{F} _{q^n}$ be the finite field with $q^n$ elements, where q is a prime power. We introduce a natural action of the projective semilinear group${\mathrm{P}\Gamma\mathrm{L}} (2, q^n)={\mathrm{PGL}} (2, q^n)\rtimes {\mathrm{Gal}} ({\mathbb F_{q^n}} /\mathbb{F} _q)$ on the set of monic irreducible polynomials over the finite field $\mathbb{F} _{q^n}$. Our main results provide information on the characterisation and number of fixed points.
This Article attempts to outline the optimal implementation of collective redress by using a comparative approach. After exploring the weaknesses of individual actions, which should be avoided, this Article presents the main forms of collective redress that exist in the various states. In particular, these forms include: Group action, representative action, and group settlement. The comparison of the various legal orders demonstrates the existence of several important parameters that need to be evaluated in order to design appropriate legislation. As a result, this Article supports alignment with the American class action and proposes specific modifications in order to eliminate several disadvantages of the original model.
We prove a version of the ergodic theorem for an action of an amenable group, where a Følner sequence need not be tempered. Instead, it is assumed that a function satisfies certain mixing conditions.
We give a new formula for the number of cyclic subgroups of a finite abelian group. This is based on Burnside’s lemma applied to the action of the power automorphism group. The resulting formula generalises Menon’s identity.
We investigate continuous transitive actions of semitopological groups on spaces, as well as separately continuous transitive actions of topological groups.
Let $n$ be a positive integer. We obtain new Menon’s identities by using the actions of some subgroups of $(\mathbb{Z}/n\mathbb{Z})^{\times }$ on the set $\mathbb{Z}/n\mathbb{Z}$. In particular, let $p$ be an odd prime and let $\unicode[STIX]{x1D6FC}$ be a positive integer. If $H_{k}$ is a subgroup of $(\mathbb{Z}/p^{\unicode[STIX]{x1D6FC}}\mathbb{Z})^{\times }$ with index $k=p^{\unicode[STIX]{x1D6FD}}u$ such that $0\leqslant \unicode[STIX]{x1D6FD}<\unicode[STIX]{x1D6FC}$ and $u\mid p-1$, then
Let $\mathfrak{D}$ be a residually finite Dedekind domain and let $\mathfrak{n}$ be a nonzero ideal of $\mathfrak{D}$. We consider counting problems for the ideal chains in $\mathfrak{D}/\mathfrak{n}$. By using the Cauchy–Frobenius–Burnside lemma, we also obtain some further extensions of Menon’s identity.
An invertible polynomial in n variables is a quasi-homogeneous polynomial consisting of n monomials so that the weights of the variables and the quasi-degree are well defined. In the framework of the construction of mirror symmetric orbifold Landau–Ginzburg models, Berglund, Hübsch and Henningson considered a pair (f, G) consisting of an invertible polynomial f and an abelian group G of its symmetries together with a dual pair . Here we study the reduced orbifold zeta functions of dual pairs (f, G) and and show that they either coincide or are inverse to each other depending on the number n of variables.
From the viewpoint of $C^{\ast }$-dynamical systems, we define a weak version of the Haagerup property for the group action on a $C^{\ast }$-algebra. We prove that this group action preserves the Haagerup property of $C^{\ast }$-algebras in the sense of Dong [‘Haagerup property for $C^{\ast }$-algebras’, J. Math. Anal. Appl.377 (2011), 631–644], that is, the reduced crossed product $C^{\ast }$-algebra $A\rtimes _{{\it\alpha},\text{r}}{\rm\Gamma}$ has the Haagerup property with respect to the induced faithful tracial state $\widetilde{{\it\tau}}$ if $A$ has the Haagerup property with respect to ${\it\tau}$.
Earlier work of the author exploiting the role of partition lattices and their Mbius functions in the theory of cumulants, k-statistics and their generalisations is extended to multiply-indexed arrays of random variables. The natural generalisations of cumulants and k-statistics to this context are shown to include components of variance and the associated linear combinations of mean-squares which are used to estimate them. Expressions for the generalised cumulants of arrays built up as sums of independent arrays of effects as in anova models are derived in terms of the generalized cumulants of the effects. The special case of degree two, covering the unbiased estimation of components of variance, is discussed in some detail.