To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We discuss representations of product systems (of $W^*$-correspondences) over the semigroup $\mathbb{Z}^n_+$ and show that, under certain pureness and Szegö positivity conditions, a completely contractive representation can be dilated to an isometric representation. For $n=1,2$ this is known to hold in general (without assuming the conditions), but for $n\geq 3$, it does not hold in general (as is known for the special case of isometric dilations of a tuple of commuting contractions). Restricting to the case of tuples of commuting contractions, our result reduces to a result of Barik, Das, Haria, and Sarkar (Isometric dilations and von Neumann inequality for a class of tuples in the polydisc. Trans. Amer. Math. Soc. 372 (2019), 1429–1450). Our dilation is explicitly constructed, and we present some applications.
The monogenic free inverse semigroup $FI_1$ is not finitely presented as a semigroup due to the classic result by Schein (1975). We extend this result and prove that a finitely generated subsemigroup of $FI_1$ is finitely presented if and only if it contains only finitely many idempotents. As a consequence, we derive that an inverse subsemigroup of $FI_1$ is finitely presented as a semigroup if and only if it is a finite semilattice.
where the homogeneous nonlinearities $f(s)=\alpha_0|s|^p+\alpha_1|s|^{p-1}s$, with p > 1. If $\alpha_0,\alpha_1 \gt 0$, $\alpha\in\mathbb{R}$, and γ < 0 satisfying $\beta\gamma=-1$, we show that for $1 \lt p \lt 5$, there exists a constrained ground state traveling wave solution with travelling velocity $\omega \gt \alpha-2$. Furthermore, we obtain the exponential decay estimates and the weak non-degeneracy of the solution. Finally, we show that the solution is spectrally stable. This is a continuation of recent work [1] on existence and stability for a water wave model with non-homogeneous nonlinearities.
We consider the space $\mathcal{P}_d$ of smooth complex projective plane curves of degree $d$. There is the tautological family of plane curves defined over $\mathcal{P}_d$, which has an associated monodromy representation $\rho _d: \pi _1(\mathcal{P}_d) \to \textrm{Mod}(\Sigma _g)$ into the mapping class group of the fiber. For $d \le 4$, classical algebraic geometry implies the surjectivity of $\rho _d$. For $d \ge 5$, the existence of a $(d-3)^{rd}$ root of the canonical bundle implies that $\rho _d$ cannot be surjective. The main result of this paper is that for $d = 5$, the image of $\rho _5$ is as large as possible, subject to this constraint. This requires combining the algebro-geometric work of Lönne with Johnson’s theory of the Torelli subgroup of $\textrm{Mod}(\Sigma _g)$.
where $N\geq2$, $0 \lt s \lt 1$, $2 \lt q \lt p \lt 2_s^*=2N/(N-2s)$, and $\mu\in\mathbb{R}$. The primary challenge lies in the inhomogeneity of the nonlinearity.We deal with the following three cases: (i) for $2 \lt q \lt p \lt 2+4s/N$ and µ < 0, there exists a threshold mass a0 for the existence of the least energy normalized solution; (ii) for $2+4s/N \lt q \lt p \lt 2_s^*$ and µ > 0, we reveal the existence of the ground state solution, explore the strong instability of standing waves, and provide a blow-up criterion; (iii) for $2 \lt q\leq2+4s/N \lt p \lt 2_s^*$ and µ < 0, the strong instability of standing wave solutions is demonstrated. These findings are illuminated through variational characterizations, the profile decomposition, and the virial estimate.
The goal of this paper is to show that the theory of curvature invariant, as introduced by Arveson, admits a natural extension to the framework of ${\mathcal U}$-twisted polyballs $B^{\mathcal U}({\mathcal H})$ which consist of k-tuples $(A_1,\ldots, A_k)$ of row contractions $A_i=(A_{i,1},\ldots, A_{i,n_i})$ satisfying certain ${\mathcal U}$-commutation relations with respect to a set ${\mathcal U}$ of unitary commuting operators on a Hilbert space ${\mathcal H}$. Throughout this paper, we will be concerned with the curvature of the elements $A\in B^{\mathcal U}({\mathcal H})$ with positive trace class defect operator $\Delta_A(I)$. We prove the existence of the curvature invariant and present some of its basic properties. A distinguished role as a universal model among the pure elements in ${\mathcal U}$-twisted polyballs is played by the standard $I\otimes{\mathcal U}$-twisted multi-shift S acting on $\ell^2({\mathbb F}_{n_1}^+\times\cdots\times {\mathbb F}_{n_k}^+)\otimes {\mathcal H}$. The curvature invariant $\mathrm{curv} (A)$ can be any non-negative real number and measures the amount by which A deviates from the universal model S. Special attention is given to the $I\otimes {\mathcal U}$-twisted multi-shift S and the invariant subspaces (co-invariant) under S and $I\otimes {\mathcal U}$, due to the fact that any pure element $A\in B^{\mathcal U}({\mathcal H})$ with $\Delta_A(I)\geq 0$ is the compression of S to such a co-invariant subspace.
Given any unital, finite, classifiable $\mathrm{C}^*$-algebra A with real rank zero and any compact simplex bundle with the fibre at zero being homeomorphic to the space of tracial states on A, we show that there exists a flow on A realizing this simplex. Moreover, we show that given any unital $\mathrm{UCT}$ Kirchberg algebra A and any proper simplex bundle with empty fibre at zero, there exists a flow on A realizing this simplex.
In this paper, we investigate Kolmogorov-type theorems for small perturbations of degenerate Hamiltonian systems. These systems are index by a parameter ξ as $ H(y,x,\xi) = \langle\omega(\xi),y\rangle {+ \bar h(y,\xi)}+\varepsilon P(y,x,\xi,\varepsilon) $, where ɛ > 0. We assume that the frequency mapping $\omega(\cdot)$, $\bar h(y,\cdot)=O(|y|^2)$ and the perturbation $\varepsilon P(y,x,\cdot, \varepsilon)$ maintain Hölder continuity about ξ. We prove that the persistent invariant tori retain the same frequency as those of the unperturbed tori, under a certain topological degree condition and a weak convexity condition for the frequency mapping. Notably, this paper presents, to our understanding, pioneering results on the KAM theorem under such conditions with only assumption of Hölder continuous dependence of frequency mapping ω on the parameter.
Well-posedness in time-weighted spaces of certain quasilinear (and semilinear) parabolic evolution equations $u'=A(u)u+f(u)$ is established. The focus lies on the case of strict inclusions $\mathrm{dom}(f)\subsetneq \mathrm{dom}(A)$ of the domains of the nonlinearities $u\mapsto f(u)$ and $u\mapsto A(u)$. Based on regularizing effects of parabolic equations it is shown that a semiflow is generated in intermediate spaces. In applications this allows one to derive global existence from weaker a priori estimates. The result is illustrated by examples of chemotaxis systems.
For commuting contractions $T_1,\dots,T_n$ acting on a Hilbert space $\mathscr{H}$ with $T=\prod_{i=1}^n T_i$, we find a necessary and sufficient condition such that $(T_1,\dots,T_n)$ dilates to a commuting tuple of isometries $(V_1,\dots,V_n)$ on the minimal isometric dilation space of T with $V=\prod_{i=1}^nV_i$ being the minimal isometric dilation of T. This isometric dilation provides a commutant lifting of $(T_1, \dots, T_n)$ on the minimal isometric dilation space of T. We construct both Schäffer and Sz. Nagy–Foias-type isometric dilations for $(T_1,\dots,T_n)$ on the minimal dilation spaces of T. Also, a different dilation is constructed when the product T is a $C._0$ contraction, that is, ${T^*}^n \rightarrow 0$ as $n \rightarrow \infty$. As a consequence of these dilation theorems, we obtain different functional models for $(T_1,\dots,T_n)$ in terms of multiplication operators on vectorial Hardy spaces. One notable fact about our models is that the multipliers are all analytic functions in one variable. The dilation when T is a $C._0$ contraction leads to a conditional factorization of T. Several examples have been constructed.
We study the geometry of tropical extensions of hyperfields, including the ordinary, signed, and complex tropical hyperfields. We introduce the framework of ‘enriched valuations’ as hyperfield homomorphisms to tropical extensions and show that a notable family of them are relatively algebraically closed. Our main results are hyperfield analogues of Kapranov’s theorem and the Fundamental theorem of tropical geometry. Utilizing these theorems, we introduce fine tropical varieties and prove a structure theorem for them in terms of their initial ideals.
In this paper, we define and study an equivariant analogue of Cohen, Farber and Weinberger’s parametrized topological complexity. We show that several results in the non-equivariant case can be extended to the equivariant case. For example, we establish the fibrewise equivariant homotopy invariance of the sequential equivariant parametrized topological complexity. We obtain several bounds on sequential equivariant topological complexity involving the equivariant category. We also obtain the cohomological lower bound and the dimension-connectivity upper bound on the sequential equivariant parametrized topological complexity. In the end, we use these results to compute the sequential equivariant parametrized topological complexity of equivariant Fadell–Neuwirth fibrations and some equivariant fibrations involving generalized projective product spaces.
We establish new results on complex and $p$-adic linear independence on a class of semiabelian varieties. As applications, we obtain transcendence results concerning complex and $p$-adic Weierstrass sigma functions associated with elliptic curves.
We prove interior boundedness and Hölder continuity for the weak solutions of nonlocal double phase equations in the Heisenberg group $\mathbb{H}^n$. This solves a problem raised by Palatucci and Piccinini et al. in 2022 and 2023 for the nonlinear integro-differential problems in Heisenberg setting. Our proof of the a priori estimates bases on De Giorgi–Nash–Moser theory, where the important ingredients are Caccioppoli-type inequality and Logarithmic estimate. To achieve this goal, we establish a new and crucial Sobolev–Poincaré type inequality in local domain, which may be of independent interest and potential applications.