To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In [CDD22], we investigated the structure of $\ast $-isomorphisms between von Neumann algebras $L(\Gamma )$ associated with graph product groups $\Gamma $ of flower-shaped graphs and property (T) wreath-like product vertex groups, as in [CIOS21]. In this follow-up, we continue the structural study of these algebras by establishing that these graph product groups $\Gamma $ are entirely recognizable from the category of all von Neumann algebras arising from an arbitrary nontrivial graph product group with infinite vertex groups. A sharper $C^*$-algebraic version of this statement is also obtained. In the process of proving these results, we also extend the main $W^*$-superrigidity result from [CIOS21] to direct products of property (T) wreath-like product groups.
In network science, one of the significant and challenging subjects is the detection of communities. Modularity [1] is a measure of community structure that compares connectivity in the network with the expected connectivity in a graph sampled from a random null model. Its optimisation is a common approach to tackle the community detection problem. We present a new method for modularity maximisation, which is based on the observation that modularity can be expressed in terms of total variation on the graph and signless total variation on the null model. The resulting algorithm is of Merriman–Bence–Osher (MBO) type. Different from earlier methods of this type, the new method can easily accommodate different choices of the null model. Besides theoretical investigations of the method, we include in this paper numerical comparisons with other community detection methods, among which the MBO-type methods of Hu et al. [2] and Boyd et al. [3], and the Leiden algorithm [4].
We study Morita equivalence for idempotent rings with involution. Following the ideas of Rieffel, we define Rieffel contexts, and we also introduce Morita $*$-contexts and enlargements for rings with involution. We prove that two idempotent rings with involution have a joint enlargement if and only if they are connected by a unitary and full Rieffel context. These conditions are also equivalent to having a unitary and surjective Morita $*$-context between those rings. We also examine how the mentioned conditions are connected to the existence of certain equivalence functors between the categories of firm modules over the given rings with involution.
In this work, the Riemann–Hilbert (RH) problem is employed to study the multiple high-order pole solutions of the cubic Camassa–Holm (cCH) equation with the term characterizing the effect of linear dispersion under zero boundary conditions and nonzero boundary conditions. Under the reflectionless situation, we generalize the residue theorem and obtain the multiple high-order pole solutions of cCH equation by solving an algebraic system. During the process of establishing the solution of RH problem, to simplify the calculations involving the implicitly expressed of variables (x, t) in the solution, we introduce a new scale (y, t) to ensure the solution of RH problem is explicitly expressed with respect to it. Finally, the exact solutions are obtained for cases involving one high-order pole and N high-order poles.
We present a one-parameter family Fλ of transcendental entire functions with zeros, whose Newton’s method yields wandering domains, coexisting with the basins of the roots of Fλ. Wandering domains for Newton maps of zero-free functions have been built before by, e.g. Buff and Rückert [23] based on the lifting method. This procedure is suited to our Newton maps as members of the class of projectable functions (or maps of the cylinder), i.e. transcendental meromorphic functions f(z) in the complex plane that are semiconjugate, via the exponential, to some map g(w), which may have at most a countable number of essential singularities. In this paper, we make a systematic study of the general relation (dynamical and otherwise) between f and g, and inspect the extension of the logarithmic lifting method of periodic Fatou components to our context, especially for those g of finite-type. We apply these results to characterize the entire functions with zeros whose Newton’s method projects to some map g which is defined at both 0 and $\infty$. The family Fλ is the simplest in this class, and its parameter space shows open sets of λ-values in which the Newton map exhibits wandering or Baker domains, in both cases regions of initial conditions where Newton’s root-findingmethod fails.
The article studies an initial boundary valueproblem (ibvp) for the radial solutions of the nonlinear Schrödinger (NLS) equation in a radially symmetric region $\Omega\in \mathbb R^n$ with boundaries. All such regions can be classified into three types: a ball Ω0 centred at origin, a region Ω1 outside a ball, and an n-dimensional annulus Ω2. To study the well-posedness of those ibvps, the function spaces for the boundary data must be specified in terms of the solutions in appropriate Sobolev spaces. It is shown that when $\Omega = \Omega_1$, the ibvp for the NLS equation is locally well-posed in $ C( [0, T^*]; H^s(\Omega_1))$ if the initial data is in $H^s(\Omega_1)$ and boundary data is in $ H^{\frac{2s+1}{4}}(0, T)$ with $s \geq 0$. This is the optimal regularity for the boundary data and cannot be improved. When $\Omega = \Omega_2$, the ibvp is locally well-posed in $ C( [0, T^*]; H^s(\Omega_2))$ if the initial data is in $ H^s(\Omega_2)$ and boundary data is in $ H^{\frac{s+1}{2}}(0, T)$ with $s \geq 0$. In this case, the boundary data requires $1/4$ more derivative compared to the case when $\Omega = \Omega_1$. When $\Omega = \Omega_0$ with n = 2 (the case with n > 2 can be discussed similarly), the ibvp is locally well-posed in $ C( [0, T^*]; H^s(\Omega_0))$ if the initial data is in $ H^s(\Omega_0)$ and boundary data is in $ H^{\frac{s+1}{2}}(0, T)$ with s > 1 (or $s \gt n/2$). Due to the lack of Strichartz estimates for the corresponding boundary integral operator with $ 0 \leq s \leq 1$, the local well-posedness can only be achieved for s > 1. It is noted that the well-posedness results on Ω0 and Ω2 are the first ones for the ibvp of NLS equations in bounded regions of higher dimension.
Let $L=-\Delta +V$ be a Schrödinger operator in ${\mathbb R}^n$ with $n\geq 3$, where $\Delta $ is the Laplace operator denoted by $\Delta =\sum ^{n}_{i=1}({\partial ^{2}}/{\partial x_{i}^{2}})$ and the nonnegative potential V belongs to the reverse Hölder class $(RH)_{q}$ with $q>n/2$. For $\alpha \in (0,1)$, we define the operator
where $\{e^{-tL^\alpha } \}_{t>0}$ is the fractional heat semigroup of the operator L, $\{v_j\}_{j\in \mathbb Z}$ is a bounded real sequence and $\{a_j\}_{j\in \mathbb Z}$ is an increasing real sequence.
We investigate the boundedness of the operator $T_N^{L^{\alpha }}$ and the related maximal operator $T^*_{L^{\alpha }}f(x):=\sup _N \vert T_N^{L^{\alpha }} f(x)\vert $ on the spaces $L^{p}(\mathbb {R}^{n})$ and $BMO_{L}(\mathbb {R}^{n})$, respectively. As extensions of $L^{p}(\mathbb {R}^{n})$, the boundedness of the operators $T_N^{L^{\alpha }}$ and $T^*_{L^{\alpha }}$ on the Morrey space $L^{\rho ,\theta }_{p,\kappa }(\mathbb {R}^{n})$ and the weak Morrey space $WL^{\rho ,\theta }_{1,\kappa }(\mathbb {R}^{n})$ has also been proved.
We give a simple sufficient condition for Quinn’s ‘bordism-type’ spectra to be weakly equivalent to commutative symmetric ring spectra. We also show that the symmetric signature is (up to weak equivalence) a monoidal transformation between symmetric monoidal functors, which implies that the Sullivan–Ranicki orientation of topological bundles is represented by a ring map between commutative symmetric ring spectra. In the course of proving these statements, we give a new description of symmetric L theory which may be of independent interest.
We study global-in-time dynamics of the stochastic nonlinear beam equations (SNLB) with an additive space-time white noise, posed on the four-dimensional torus. The roughness of the noise leads us to introducing a time-dependent renormalization, after which we show that SNLB is pathwise locally well-posed in all subcritical and most of the critical regimes. For the (renormalized) defocusing cubic SNLB, we establish pathwise global well-posedness below the energy space, by adapting a hybrid argument of Gubinelli-Koch-Oh-Tolomeo (2022) that combines the I-method with a Gronwall-type argument. Lastly, we show almost sure global well-posedness and invariance of the Gibbs measure for the stochastic damped nonlinear beam equations in the defocusing case.
where ɛ is apositive parameter, $0 \lt s \lt 1$, $2 \leqslant p \lt q \lt \min\{2p, N / s\}$, $0 \lt \mu \lt sp$, $(- \Delta)_t^s$$(t \in \left\{p,q\right\})$ is the fractional t-Laplace operator, the reaction term $f : \mathbb{R} \mapsto \mathbb{R}$ is continuous, and the potential $V \in C (\mathbb{R}^N , \mathbb{R})$ satisfying a local condition. Using a variational approach and topological tools (the non-standard C1-Nehari manifold analysis and the abstract category theory), multiplicity of positive solutions and concentration properties for the above problem are established. Our results extend and complement some previous contributions related to double phase variational integrals.
In this paper, we establish a new version of one-dimensional discrete improved Hardy’s inequality with shifts by introducing a shifting discrete Dirichlet’s Laplacian. We prove that the general discrete Hardy’s inequality as well as its variants in some special cases admit improvements. Further, it is proved that two-variable discrete $p$-Hardy inequality can also be improved via improved discrete $p$-Hardy inequality in one dimension. The result is also extended to the multivariable cases.
In this article, we consider some critical Brézis-Nirenberg problems in dimension $N \geq 3$ that do not have a solution. We prove that a supercritical perturbation can lead to the existence of a positive solution. More precisely, we consider the equation:
where $B \subset \mathbb{R}^N$ is a unit ball centred at the origin, $N\geq 3$, $r=\vert x \vert$, $\alpha \in (0,\min\{N/2,N-2\})$, λ is a fixed real parameter and $q\in [2,2^*]$. This class of problems can be interpreted as a perturbation of the classical Brézis–Nirenberg problem by the term rα at the exponent, making the problem supercritical when $r \in (0,1)$. More specifically, we study the effect of this supercritical perturbation on the existence of solutions. In particular, when N = 3, an interesting and unexpected phenomenon occurs. We obtain the existence of solutions for λ in a range where the Brézis–Nirenberg problem has no solution.
To date, the bestmethodsfor estimating the growth of mean values of arithmetic functions rely on the Voronoï summation formula. By noticing a general pattern in the proof of his summation formula, Voronoï postulated that analogous summation formulas for $\sum a(n)f(n)$ can be obtained with ‘nice’ test functions f(n), provided a(n) is an ‘arithmetic function’. These arithmetic functions a(n) are called so because they are expected to appear as coefficients of some L-functions satisfying certain properties. It has been well-known that the functional equation for a general L-function can be used to derive a Voronoï-type summation identity for that L-function. In this article, we show that such a Voronoï-typesummation identity in fact endows the L-function with some structural properties, yielding in particular the functional equation. We do this by considering Dirichlet series satisfying functional equations involving multiple Gamma factors and show that a given arithmetic function appears as a coefficient of such a Dirichlet series if and only if it satisfies the aforementioned summation formulas.
The aim of this article is to study the asymptotic behaviour of non-autonomous stochastic lattice systems. We first show the existence and uniqueness of a pullback measure attractor. Moreover, when deterministic external forcing terms are periodic in time, we show the pullback measure attractors are periodic. We then study the upper semicontinuity of pullback measure attractors as the noise intensity goes to zero. Pullback asymptotic compact for a family of probability measures with respect to probability distributions of the solutions is demonstrated by using uniform a priori estimates for far-field values of solutions.
In a two-dimensional plane, entire solutions of the Allen–Cahn type equation with a finite Morse index necessarily have finite ends. In the case that the nonlinearity is a sine function, all the finite-end solutions have been classified. However, for the classical Allen–Cahn nonlinearity, the structure of the moduli space of these solutions remains unknown. We construct in this paper new finite-end solutions to the Allen–Cahn equation, which will be called fence of saddle solutions, by gluing saddle solutions together. Our construction can be generalized to the case of gluing multiple four-end solutions, with some of their ends being almost parallel.
Consider a flow in $\mathbb{R}^3$ and let K be the biggest invariant subset of some compact region of interest $N \subseteq \mathbb{R}^3$. The set K is often not computable, but the way the flow crosses the boundary of N can provide indirect information about it. For example, classical tools such as Ważewski’s principle or the Poincaré–Hopf theorem can be used to detect whether K is non-empty or contains rest points, respectively. We present a criterion that can establish whether K has a non-trivial homology by looking at the subset of the boundary of N along which the flow is tangent to N. We prove that the criterion is as sharp as possible with the information it uses as an input. We also show that it is algorithmically checkable.
We study the real-valued modified KdV equation on the real line and the circle in both the focusing and the defocusing cases. By employing the method of commuting flows introduced by Killip and Vişan (2019), we prove global well-posedness in Hs for $0\leq s \lt \tfrac{1}{2}$. On the line, we show how the arguments in the recent article by Harrop-Griffiths, Killip, and Vişan (2020) may be simplified in the higher regularity regime $s\geq 0$. On the circle, we provide an alternative proof of the sharp global well-posedness in L2 due to Kappeler and Topalov (2005) and also extend this to the large-data focusing case.
We introduce the notion of the equivariant covering type of a space X on which a finite group G acts and study its properties. The equivariant covering type measures the size of G-equivariant good covers of X and is thus an extension of the covering type of a space, introduced by Karoubi and Weibel. We show that the equivariant covering type is a G-homotopy invariant and describe its relation with other G-invariants, like the equivariant LS-category, G-genus, and the multiplicative structures of equivariant cohomology theories. We also compute the G-covering type of regular G-graphs, give estimates for orientation-preserving actions on surfaces and for the projectivizations of complex representations of G and cohomology spheres. As an application, we derive estimates of sizes of minimal G-triangulations for various G-spaces.
In this paper, we study random walks on groups that contain superlinear-divergent geodesics, in the line of thoughts of Goldsborough and Sisto. The existence of a superlinear-divergent geodesic is a quasi-isometry invariant which allows us to execute Gouëzel’s pivoting technique. We develop the theory of superlinear divergence and establish a central limit theorem for random walks on these groups.
Entropy of measure-preserving or continuous actions of amenable discrete groups allows for various equivalent approaches. Among them are those given by the techniques developed by Ollagnier and Pinchon on the one hand and the Ornstein–Weiss lemma on the other. We extend these two approaches to the context of actions of amenable topological groups. In contrast to the discrete setting, our results reveal a remarkable difference between the two concepts of entropy in the realm of non-discrete groups: while the first quantity collapses to 0 in the non-discrete case, the second yields a well-behaved invariant for amenable unimodular groups. Concerning the latter, we moreover study the corresponding notion of topological pressure, prove a Goodwyn-type theorem, and establish the equivalence with the uniform lattice approach (for locally compact groups admitting a uniform lattice). Our study elaborates on a version of the Ornstein–Weiss lemma due to Gromov.