To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study analogues of Kronecker coefficients for symmetric inverse semigroups, for dual symmetric inverse semigroups and for the inverse semigroups of bijections between subquotients of finite sets. In all cases, we reduce the problem of determination of such coefficients to some group-theoretic and combinatorial problems. For symmetric inverse semigroups, we provide an explicit formula in terms of the classical Kronecker and Littlewood–Richardson coefficients for symmetric groups.
This article introduces the Clairaut conformal Riemannian map. This notion includes the previously studied notions of Clairaut conformal submersion, Clairaut Riemannian submersion, and the Clairaut Riemannian map as particular cases, and is well known in the classical theory of surfaces. Toward this, we find the necessary and sufficient condition for a conformal Riemannian map $\varphi : M \to N$ between Riemannian manifolds to be a Clairaut conformal Riemannian map with girth $s = e^f$. We show that the fibers of $\varphi $ are totally umbilical with mean curvature vector field the negative gradient of the logarithm of the girth function, that is, $-\nabla f$. Using this, we obtain a local splitting of M as a warped product and a usual product, if the horizontal space is integrable (under some appropriate hypothesis). We also provide some examples of the Clairaut conformal Riemannian maps to confirm our main theorem. We observe that the Laplacian of the logarithmic girth, that is, of f, on the total manifold takes the special form. It reduces to the Laplacian on the horizontal distribution, and if it is nonnegative, the universal covering space of M becomes a product manifold, under some hypothesis on f. Analysis of the Laplacian of f also yields the splitting of the universal covering space of M as a warped product under some appropriate conditions. We calculate the sectional curvature and mixed sectional curvature of M when f is a distance function. We also find the relationships between the total manifold and the fibers being symmetrical and, in particular, having constant sectional curvature, and from there, we compare their universal covering spaces, if fibers are also complete, provided f is a distance function. We also find a condition on the curvature tensor of the fibers to be semi-symmetric, provided that the total manifold is semi-symmetric and f is a distance function. In turn, this gives the warped product of symmetric, semi-symmetric spaces into two symmetric, semi-symmetric subspaces (under some hypothesis). Also if the Hessian or the Laplacian of the Riemannian curvature tensor fields is zero, or has a harmonic curvature tensor, then the fibers of $\varphi $ also satisfy the same property, if f is also a distance function. By obtaining Bochner-type formulas for Clairaut conformal Riemannian maps, we establish the relations between the divergences of the Ricci curvature tensor on fibers and horizontal space and the corresponding scalar curvature. We also study the horizontal Killing vector field of constant length and show that they are parallel under appropriate hypotheses. This in turn gives the splitting of the total manifold, if it admits a horizontal parallel Killing vector field and if the horizontal space is integrable. Finally, assuming that $\nabla f$ is a nontrivial gradient Ricci soliton on M, we prove that any vertical vector field is incompressible and hence the volume form of the fiber is invariant under the flow of the vector field.
This paper is the first of a two part series devoted to describing relations between congruence and crystallographic braid groups. We recall and introduce some elements belonging to congruence braid groups and we establish some (iso)-morphisms between crystallographic braid groups and corresponding quotients of congruence braid groups.
For the special case $\eta =0$, fruitful results have been achieved since Tao and Winkler's work in 2011. However, there is no any progress for the general case $\eta >0$ in the past ten years. In this paper, we analysed some commonly used research methods when $\eta =0$, and found that these methods are completely unsuitable for situations where $\eta >0$. By introducing some new forms of functionals, we reconstruct the relationship between the haptotactic term and the nonlinear diffusion term, and ultimately prove the global existence of weak solutions. This result improves and perfects a series of works previously presented in the literature.
The Choquard equation is a partial differential equation that has gained significant interest and attention in recent decades. It is a nonlinear equation that combines elements of both the Laplace and Schrödinger operators, and it arises frequently in the study of numerous physical phenomena, from condensed matter physics to nonlinear optics.
In particular, the steady states of the Choquard equation were thoroughly investigated using a variational functional acting on the wave functions.
In this article, we introduce a dual formulation for the variational functional in terms of the potential induced by the wave function, and use it to explore the existence of steady states of a multi-state version the Choquard equation in critical and sub-critical cases.
This paper studies various aspects of inverse limits of locally expanding affine linear maps on flat branched manifolds, which I call flat Wieler solenoids. Among the aspects studied are different types of cohomologies, the rates of mixing given by the Ruelle spectrum of the hyperbolic map acting on this space, and solutions of the cohomological equation in primitive substitution subshifts for Hölder functions. The overarching theme is that considerations of $\alpha $-Hölder regularity on Cantor sets go a long way.
We study shift spaces over a finite alphabet that can be approximated by mixing shifts of finite type in the sense of (pseudo)metrics connected to Ornstein’s $\bar {d}$ metric ($\bar {d}$-approachable shift spaces). The class of $\bar {d}$-approachable shifts can be considered as a topological analog of measure-theoretical Bernoulli systems. The notion of $\bar {d}$-approachability, together with a closely connected notion of $\bar {d}$-shadowing, was introduced by Konieczny, Kupsa, and Kwietniak [Ergod. Th. & Dynam. Sys.43(3) (2023), 943–970]. These notions were developed with the aim of significantly generalizing specification properties. Indeed, many popular variants of the specification property, including the classic one and the almost/weak specification property, ensure $\bar {d}$-approachability and $\bar {d}$-shadowing. Here, we study further properties and connections between $\bar {d}$-shadowing and $\bar {d}$-approachability. We prove that $\bar {d}$-shadowing implies $\bar {d}$-stability (a notion recently introduced by Tim Austin). We show that for surjective shift spaces with the $\bar {d}$-shadowing property the Hausdorff pseudodistance ${\bar d}^{\mathrm {H}}$ between shift spaces induced by $\bar {d}$ is the same as the Hausdorff distance between their simplices of invariant measures with respect to the Hausdorff distance induced by Ornstein’s metric $\bar {d}$ between measures. We prove that without $\bar {d}$-shadowing this need not to be true (it is known that the former distance always bounds the latter). We provide examples illustrating these results, including minimal examples and proximal examples of shift spaces with the $\bar {d}$-shadowing property. The existence of such shift spaces was announced in the earlier paper mentioned above. It shows that $\bar {d}$-shadowing indeed generalizes the specification property.
Under certain conditions, we construct a countable Markov partition for pointwise hyperbolic diffeomorphism $f:M\rightarrow M$ on an open invariant subset $O\subset M$, which allows the Lyapunov exponents to be zero. From this partition, we define a symbolic extension that is finite-to-one and onto a subset of O that carries the same finite f-invariant measures as O. Our method relies upon shadowing theory of a recurrent-pointwise-pseudo-orbit that we introduce. As a canonical application, we estimate the number of closed orbits for f.
We extend previously known two-dimensional multiplication tiling systems that simulate multiplication by two natural numbers p and q in base $pq$ to higher dimensional multiplication tessellation systems. We develop the theory of these systems and link different multiplication tessellation systems with each other via macrotile operations that glue cubes in one tessellation system into larger cubes of another tessellation system. The macrotile operations yield topological conjugacies and factor maps between cellular automata performing multiplication by positive numbers in various bases.
Given a two-sided shift space on a finite alphabet and a continuous potential function, we give conditions under which an equilibrium measure can be described using a construction analogous to Hausdorff measure that goes back to the work of Bowen. This construction was previously applied to smooth uniformly and partially hyperbolic systems by the first author, Pesin, and Zelerowicz. Our results here apply to all subshifts of finite type and Hölder continuous potentials, but extend beyond this setting, and we also apply them to shift spaces with synchronizing words.
We prove that every genuinely partially hyperbolic $\mathbb {Z}^r$-action by toral automorphisms can be perturbed in $C^1$-topology, so that the resulting action is continuously conjugate, but not $C^1$-conjugate, to the original one.
For a proper, Gromov-hyperbolic metric space and a discrete, non-elementary, group of isometries, we define a natural subset of the limit set at infinity of the group called the ergodic limit set. The name is motivated by the fact that every ergodic measure which is invariant for the geodesic flow on the quotient metric space is concentrated on geodesics with endpoints belonging to the ergodic limit set. We refine the classical Bishop–Jones theorem proving that the packing dimension of the ergodic limit set coincides with the critical exponent of the group.
The definition of subshifts of finite symbolic rank is motivated by the finite rank measure-preserving transformations which have been extensively studied in ergodic theory. In this paper, we study subshifts of finite symbolic rank as essentially minimal Cantor systems. We show that minimal subshifts of finite symbolic rank have finite topological rank, and conversely, every minimal Cantor system of finite topological rank is either an odometer or conjugate to a minimal subshift of finite symbolic rank. We characterize the class of all minimal Cantor systems conjugate to a rank-$1$ subshift and show that it is dense but not generic in the Polish space of all minimal Cantor systems. Within some different Polish coding spaces of subshifts, we also show that the rank-1 subshifts are dense but not generic. Finally, we study topological factors of minimal subshifts of finite symbolic rank. We show that every infinite odometer and every irrational rotation is the maximal equicontinuous factor of a minimal subshift of symbolic rank $2$, and that a subshift factor of a minimal subshift of finite symbolic rank has finite symbolic rank.
It is conjectured that the only integrable metrics on the two-dimensional torus are Liouville metrics. In this paper, we study a deformative version of this conjecture: we consider integrable deformations of a non-flat Liouville metric in a conformal class and show that for a fairly large class of such deformations, the deformed metric is again Liouville. The principal idea of the argument is that the preservation of rational invariant tori in the foliation of the phase space forces a linear combination on the Fourier coefficients of the deformation to vanish. Showing that the resulting linear system is non-degenerate will then yield the claim. Since our method of proof immediately carries over to higher dimensional tori, we obtain analogous statements in this more general case. To put our results in perspective, we review existing results about integrable metrics on the torus.
We present a streamlined proof of a result essentially presented by the author in [Some counterexamples in topological dynamics. Ergod. Th. & Dynam. Sys.28(4) (2008), 1291–1322], namely that for every set $S = \{s_1, s_2, \ldots \} \subset \mathbb {N}$ of zero Banach density and finite set A, there exists a minimal zero-entropy subshift $(X, \sigma )$ so that for every sequence $u \in A^{\mathbb {Z}}$, there is $x_u \in X$ with $x_u(s_n) = u(n)$ for all $n \in \mathbb {N}$. Informally, minimal deterministic sequences can achieve completely arbitrary behavior upon restriction to a set of zero Banach density. As a corollary, this provides counterexamples to the polynomial Sarnak conjecture reported by Eisner [A polynomial version of Sarnak’s conjecture. C. R. Math. Acad. Sci. Paris353(7) (2015), 569–572] which are significantly more general than some recently provided by Kanigowski, Lemańczyk and Radziwiłł [Prime number theorem for analytic skew products. Ann. of Math. (2)199 (2024), 591–705] and by Lian and Shi [A counter-example for polynomial version of Sarnak’s conjecture. Adv. Math.384 (2021), Paper no. 107765] and shows that no similar result can hold under only the assumptions of minimality and zero entropy.