To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Edited by
R. A. Bailey, University of St Andrews, Scotland,Peter J. Cameron, University of St Andrews, Scotland,Yaokun Wu, Shanghai Jiao Tong University, China
Eigenvalues of the Laplacian matrix of a graph have been widely used in studying connectivity and expansion properties of networks, and also in analyzing random walks on a graph. Independently, statisticians introduced various optimality criteria in experimental design, the goal being to obtain more accurate estimates of quantities of interest in an experiment. It turns out that the most popular of these optimality criteria for block designs are determined by the Laplacian eigenvalues of the concurrence graph, or of the Levi graph, of the design. The most important optimality criteria, called A (average), D (determinant) and E (extreme), are related to the conductance of the graph as an electrical network, the number of spanning trees, and the isoperimetric properties of the graphs, respectively. The number of spanning trees is also an evaluation of the Tutte polynomial of the graph, and is the subject of the Merino–Welsh conjecture relating it to acyclic and totally cyclic orientations, of interest in their own right. This chapter ties these ideas together, building on the work in [4] and [5].
Edited by
R. A. Bailey, University of St Andrews, Scotland,Peter J. Cameron, University of St Andrews, Scotland,Yaokun Wu, Shanghai Jiao Tong University, China
Edited by
R. A. Bailey, University of St Andrews, Scotland,Peter J. Cameron, University of St Andrews, Scotland,Yaokun Wu, Shanghai Jiao Tong University, China
Edited by
R. A. Bailey, University of St Andrews, Scotland,Peter J. Cameron, University of St Andrews, Scotland,Yaokun Wu, Shanghai Jiao Tong University, China
Edited by
R. A. Bailey, University of St Andrews, Scotland,Peter J. Cameron, University of St Andrews, Scotland,Yaokun Wu, Shanghai Jiao Tong University, China
We give an introduction to a topic in the “stable algebra of matrices,” as related to certain problems in symbolic dynamics. We introduce enough symbolic dynamics to explain these connections, but the algebra is of independent interest and can be followed with little attention to the symbolic dynamics. This “stable algebra of matrices” involves the study of properties and relations of square matrices over a semiring S, which are invariant under two fundamental equivalence relations: shift equivalence and strong shift equivalence. When S is a field, these relations are the same, and matrices over S are shift equivalent if and only if the nonnilpotent parts of their canonical forms are similar. We give a detailed account of these relations over other rings and semirings. When S is a ring, this involves module theory and algebraic K theory. We discuss in detail and contrast the problems of characterizing the possible spectra, and the possible nonzero spectra, of nonnegative real matrices.We also review key features of the automorphism group of a shift of finite type; the recently introduced stabilized automorphism group; and the work of Kim, Roush and Wagoner giving counterexamples to Williams’ shift equivalence conjecture.
Edited by
R. A. Bailey, University of St Andrews, Scotland,Peter J. Cameron, University of St Andrews, Scotland,Yaokun Wu, Shanghai Jiao Tong University, China
Edited by
R. A. Bailey, University of St Andrews, Scotland,Peter J. Cameron, University of St Andrews, Scotland,Yaokun Wu, Shanghai Jiao Tong University, China
These lecture notes provide quantum probabilistic concepts and methods for spectral analysis of graphs, in particular, for the study of asymptotic behavior of the spectral distributions of growing graphs. Quantum probability theory is an algebraic generalization of classical (Kolmogorovian) probability theory, where an element of a (not necessarily commutative) ∗-algebra is treated as a random variable. In this aspect the concepts and methods peculiar to quantum probability are applied to the spectral analysis of adjacency matrices of graphs. In particular, we focus on the method of quantum decomposition and the use of various concepts of independence. The former discloses the noncommutative nature of adjacency matrices and gives a systematic method of computing spectral distributions. The latter is related to various graph products and provides a unified aspect in obtaining the limit spectral distributions as corollaries of various central limit theorems.
Edited by
R. A. Bailey, University of St Andrews, Scotland,Peter J. Cameron, University of St Andrews, Scotland,Yaokun Wu, Shanghai Jiao Tong University, China
For $\lambda \in (0,\,1/2]$ let $K_\lambda \subset \mathbb {R}$ be a self-similar set generated by the iterated function system $\{\lambda x,\, \lambda x+1-\lambda \}$. Given $x\in (0,\,1/2)$, let $\Lambda (x)$ be the set of $\lambda \in (0,\,1/2]$ such that $x\in K_\lambda$. In this paper we show that $\Lambda (x)$ is a topological Cantor set having zero Lebesgue measure and full Hausdorff dimension. Furthermore, we show that for any $y_1,\,\ldots,\, y_p\in (0,\,1/2)$ there exists a full Hausdorff dimensional set of $\lambda \in (0,\,1/2]$ such that $y_1,\,\ldots,\, y_p \in K_\lambda$.
Edited by
R. A. Bailey, University of St Andrews, Scotland,Peter J. Cameron, University of St Andrews, Scotland,Yaokun Wu, Shanghai Jiao Tong University, China
This is an introduction to representation theory and harmonic analysis on finite groups. This includes, in particular, Gelfand pairs (with applications to diffusion processes à la Diaconis) and induced representations (focusing on the little group method of Mackey and Wigner). We also discuss Laplace operators and spectral theory of finite regular graphs. In the last part, we present the representation theory of GL(2, Fq), the general linear group of invertible 2 × 2 matrices with coefficients in a finite field with q elements. More precisely, we revisit the classical Gelfand–Graev representation of GL(2, Fq) in terms of the so-called multiplicity-free triples and their associated Hecke algebras. The presentation is not fully self-contained: most of the basic and elementary facts are proved in detail, some others are left as exercises, while, for more advanced results with no proof, precise references are provided.
All vital functions of living cells rely on the production of various functional molecules through gene expression. The production periods are burst-like and stochastic due to the discrete nature of biochemical reactions. In certain contexts, the concentrations of RNA or protein require regulation to maintain a fine internal balance within the cell. Here we consider a motif of two types of RNA molecules – mRNA and an antagonistic microRNA – which are encoded by a shared coding sequence and form a feed forward loop (FFL). This control mechanism is shown to be perfectly adapting in the deterministic context. We demonstrate that the adaptation (of the mean value) becomes imperfect if production occurs in random bursts. The FFL nevertheless outperforms the benchmark feedback loop in terms of counterbalancing variations in the signal. Methodologically, we adapt a hybrid stochastic model, which has widely been used to model a single regulatory molecule, to the current case of a motif involving two species; the use of the Laplace transform thereby circumvents the problem of moment closure that arises owing to the mRNA–microRNA interaction. We expect that the approach can be applicable to other systems with nonlinear kinetics.
The main theorem of this paper establishes a uniform syndeticity result concerning the multiple recurrence of measure-preserving actions on probability spaces. More precisely, for any integers $d,l\geq 1$ and any $\varepsilon> 0$, we prove the existence of $\delta>0$ and $K\geq 1$ (dependent only on d, l, and $\varepsilon $) such that the following holds: Consider a solvable group $\Gamma $ of derived length l, a probability space $(X, \mu )$, and d pairwise commuting measure-preserving $\Gamma $-actions $T_1, \ldots , T_d$ on $(X, \mu )$. Let E be a measurable set in X with $\mu (E) \geq \varepsilon $. Then, K many (left) translates of
cover $\Gamma $. This result extends and refines uniformity results by Furstenberg and Katznelson. As a combinatorial application, we obtain the following uniformity result. For any integers $d,l\geq 1$ and any $\varepsilon> 0$, there are $\delta>0$ and $K\geq 1$ (dependent only on d, l, and $\varepsilon $) such that for all finite solvable groups G of derived length l and any subset $E\subset G^d$ with $m^{\otimes d}(E)\geq \varepsilon $ (where m is the uniform measure on G), we have that K-many (left) translates of
The aim of this paper is to prove a qualitative property, namely the preservation of positivity, for Schrödinger-type operators acting on $L^p$ functions defined on (possibly incomplete) Riemannian manifolds. A key assumption is a control of the behaviour of the potential of the operator near the Cauchy boundary of the manifolds. As a by-product, we establish the essential self-adjointness of such operators, as well as its generalization to the case $p\neq 2$, i.e. the fact that smooth compactly supported functions are an operator core for the Schrödinger operator in $L^p$.
In this note, we examine the proportion of periodic orbits of Anosov flows that lie in an infinite zero density subset of the first homology group. We show that on a logarithmic scale we get convergence to a discrete fractal dimension.
Dans cet article, nous étudions la cohomologie de de Rham du premier revêtement de la tour de Drinfel’d. En particulier, nous obtenons une preuve purement locale du fait que la partie supercuspidale réalise la correspondance de Jacquet-Langlands locale pour $\mathrm {GL}_n$ en la comparant à la cohomologie rigide de certaines variétés de Deligne-Lusztig. Les représentations obtenues sont analogues à celles qui apparaissent dans la cohomologie $\ell $-adique lorsqu’on oublie l’action du groupe de Weil. La preuve repose sur une généralisation d’un résultat d’excision de Grosse-Klönne et de la description explicite du premier revêtement en tant que revêtement cyclique obtenu par l’auteur dans un travail précédent.
In this paper, we study transitivity of partially hyperbolic endomorphisms of the two torus whose action in the first homology group has two integer eigenvalues of moduli greater than one. We prove that if the Jacobian is everywhere greater than the modulus of the largest eigenvalue, then the map is robustly transitive. For this, we introduce Blichfedt’s theorem as a tool for extracting dynamical information from the action of a map in homology. We also treat the case of specially partially hyperbolic endomorphisms, for which we obtain a complete dichotomy: either the map is transitive and conjugated to its linear part, or its unstable foliation must contain an annulus which may either be wandering or periodic.
We establish two-term spectral asymptotics for the operator of linear elasticity with mixed boundary conditions on a smooth compact Riemannian manifold of arbitrary dimension. We illustrate our results by explicit examples in dimension two and three, thus verifying our general formulae both analytically and numerically.
There are several factors that can cause the excessive accumulation of biofluid in human tissue, such as pregnancy, local traumas, allergic responses or the use of certain therapeutic medications. This study aims to further investigate the shear-dependent peristaltic flow of Phan–Thien–Tanner (PTT) fluid within a planar channel by incorporating the phenomenon of electro-osmosis. This research is driven by the potential biomedical applications of this knowledge. The non-Newtonian fluid features of the PTT fluid model are considered as physiological fluid in a symmetric planar channel. This study is significant, as it demonstrates that the chyme in the small intestine can be modelled as a PTT fluid. The governing equations for the flow of the ionic liquid, thermal radiation and heat transfer, along with the Poisson–Boltzmann equation within the electrical double layer, are discussed. The long-wavelength ($\delta \ll 1$) and low-Reynolds-number approximations ($Re \to 0$) are used to simplify the simultaneous equations. The solutions analyse the Debye electronic length parameter, Helmholtz–Smoluchowski velocity, Prandtl number and thermal radiation. Additionally, streamlines are used to examine the phenomenon of entrapment. Graphs are used to explain the influence of different parameters on the flow and temperature. The findings of the current model have practical implications in the design of microfluidic devices for different particle transport phenomena at the micro level. Additionally, the noteworthy results highlight the advantages of electro-osmosis in controlling both flow and heat transfer. Ultimately, our objective is to use these findings as a guide for the advancement of lab-on-a-chip systems.
In this paper, we investigate the twisted GGP conjecture for certain tempered representations using the theta correspondence and establish some special cases, namely when the L-parameter of the unitary group is the sum of conjugate-dual characters of the appropriate sign.