To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We provide a general recursive method for constructing transfer systems on finite lattices. Using this, we calculate the number of homotopically distinct $N_{\infty} $ operads for dihedral groups $D_{p^n}$, $p \gt 2$ prime, and cyclic groups $C_{qp^n}$, $p \neq q$ prime. We then further display some of the beautiful combinatorics obtained by restricting to certain homotopically meaningful $N_\infty$ operads for these groups.
A classification of multiplication modules over multiplication rings with finitely many minimal primes is obtained. A characterization of multiplication rings with finitely many minimal primes is given via faithful, Noetherian, distributive modules. It is proven that for a multiplication ring with finitely many minimal primes every faithful, Noetherian, distributive module is a faithful multiplication module, and vice versa.
Let $M$ be an oriented smooth manifold and $\operatorname{Homeo}\!(M,\omega )$ the group of measure preserving homeomorphisms of $M$, where $\omega$ is a finite measure induced by a volume form. In this paper, we define volume and Euler classes in bounded cohomology of an infinite dimensional transformation group $\operatorname{Homeo}_0\!(M,\omega )$ and $\operatorname{Homeo}_+\!(M,\omega )$, respectively, and in several cases prove their non-triviality. More precisely, we define:
• Volume classes in $\operatorname{H}_b^n(\operatorname{Homeo}_0\!(M,\omega ))$, where $M$ is a hyperbolic manifold of dimension $n$.
• Euler classes in $\operatorname{H}_b^2(\operatorname{Homeo}_+(S,\omega ))$, where $S$ is an oriented closed hyperbolic surface.
We show that Euler classes have positive norms for any closed hyperbolic surface and volume classes have positive norms for all hyperbolic surfaces and certain hyperbolic $3$-manifolds; hence, they are non-trivial.
In this paper, we prove a cocycle version of marked length spectrum rigidity. There are two consequences: the first one is marked length pattern rigidity for arithmetic hyperbolic locally symmetric manifolds, and the second one is a strengthened marked length spectrum rigidity for surfaces and closed locally symmetric manifolds.
We study the multifractal properties of the uniform approximation exponent and asymptotic approximation exponent in continued fractions. As a corollary, we calculate the Hausdorff dimension of the uniform Diophantine set
$$ \begin{align*} {\mathcal{U}(\hat{\nu})}= &\ \{x\in[0,1)\colon \text{for all }N\gg1,\text{ there exists }n\in[1,N],\\&\ \ \text{ such that }|T^{n}(x)-y| < |I_{N}(y)|^{\hat{\nu}}\} \end{align*} $$
for a class of quadratic irrational numbers $y\in [0,1)$. These results contribute to the study of the uniform Diophantine approximation, and apply to investigating the multifractal properties of run-length function in continued fractions.
We study the dynamics of dissipative billiard maps within planar convex domains. Such maps have a global attractor. We are interested in the topological and dynamical complexity of the attractor, in terms both of the geometry of the billiard table and of the strength of the dissipation. We focus on the study of an invariant subset of the attractor, the so-called Birkhoff attractor. On the one hand, we show that for a generic convex table with ‘pinched’ curvature, the Birkhoff attractor is a normally contracted manifold when the dissipation is strong. On the other hand, for a mild dissipation, we prove that, generically, the Birkhoff attractor is complicated, both from the topological and the dynamical points of view.
For an arbitrary countable discrete infinite group G, non-singular rank-one actions are introduced. It is shown that the class of non-singular rank-one actions coincides with the class of non-singular $(C,F)$-actions. Given a decreasing sequence of cofinite subgroups in G with $\bigcap _{n=1}^\infty \bigcap _{g\in G}g\Gamma _ng^{-1}=\{1_G\}$, the projective limit of the homogeneous G-spaces $G/\Gamma _n$ as $n\to \infty $ is a G-space. Endowing this G-space with an ergodic non-singular non-atomic measure, we obtain a dynamical system which is called a non-singular odometer. Necessary and sufficient conditions are found for a rank-one non-singular G-action to have a finite factor and a non-singular odometer factor in terms of the underlying $(C,F)$-parameters. Similar conditions are also found for a rank-one non-singular G-action to be isomorphic to an odometer. Minimal Radon uniquely ergodic locally compact Cantor models are constructed for the non-singular rank-one extensions of odometers. Several concrete examples are constructed and several facts are proved that illustrate a sharp difference of the non-singular non-commutative case from the classical finite measure preserving one: odometer actions which are not of rank-one and factors of rank-one systems which are not of rank one; however, each probability preserving odometer is a factor of an infinite measure preserving rank-one system, etc.
We study actions of higher rank lattices $\Gamma <G$ on hyperbolic spaces and we show that all such actions satisfying mild properties come from the rank-one factors of G. In particular, all non-elementary isometric actions on an unbounded hyperbolic space are of this type.
Let A be a rational function of one complex variable of degree at least two, and $z_0$ its repelling fixed point with the multiplier $\unicode{x3bb} .$ A Poincaré function associated with $z_0$ is a function meromorphic on ${\mathbb C}$ such that , and In this paper, we study the following problem: given Poincaré functions and , find out if there is an algebraic relation between them and, if such a relation exists, describe the corresponding algebraic curve $f(x,y)=0.$ We provide a solution, which can be viewed as a refinement of the classical theorem of Ritt about commuting rational functions. We also reprove and extend previous results concerning algebraic dependencies between Böttcher functions.
We study the vectorial length compactification of the space of conjugacy classes of maximal representations of the fundamental group $\Gamma$ of a closed hyperbolic surface $\Sigma$ in $\textrm{PSL}(2,{\mathbb{R}})^n$. We identify the boundary with the sphere ${\mathbb{P}}(({\mathcal{ML}})^n)$, where $\mathcal{ML}$ is the space of measured geodesic laminations on $\Sigma$. In the case $n=2$, we give a geometric interpretation of the boundary as the space of homothety classes of ${\mathbb{R}}^2$-mixed structures on $\Sigma$. We associate to such a structure a dual tree-graded space endowed with an ${\mathbb{R}}_+^2$-valued metric, which we show to be universal with respect to actions on products of two $\mathbb{R}$-trees with the given length spectrum.
Consider the quadratic family $T_a(x) = a x (1 - x)$ for $x \in [0, 1]$ and mixing Collet–Eckmann (CE) parameters $a \in (2,4)$. For bounded $\varphi $, set $\tilde \varphi _{a} := \varphi - \int \varphi \, d\mu _a$, with $\mu _a$ the unique acim of $T_a$, and put $(\sigma _a (\varphi ))^2 := \int \tilde \varphi _{a}^2 \, d\mu _a + 2 \sum _{i>0} \int \tilde \varphi _{a} (\tilde \varphi _{a} \circ T^i_{a}) \, d\mu _a$. For any mixing Misiurewicz parameter $a_{*}$, we find a positive measure set $\Omega _{*}$ of mixing CE parameters, containing $a_{*}$ as a Lebesgue density point, such that for any Hölder $\varphi $ with $\sigma _{a_{*}}(\varphi )\ne 0$, there exists $\epsilon _\varphi>0$ such that, for normalized Lebesgue measure on $\Omega _{*}\cap [a_{*}-\epsilon _\varphi , a_{*}+\epsilon _\varphi ]$, the functions $\xi _i(a)=\tilde \varphi _a(T_a^{i+1}(1/2))/\sigma _a (\varphi )$ satisfy an almost sure invariance principle (ASIP) for any error exponent $\gamma>2/5$. (In particular, the Birkhoff sums satisfy this ASIP.) Our argument goes along the lines of Schnellmann’s proof for piecewise expanding maps. We need to introduce a variant of Benedicks–Carleson parameter exclusion and to exploit fractional response and uniform exponential decay of correlations from Baladi et al [Whitney–Hölder continuity of the SRB measure for transversal families of smooth unimodal maps. Invent. Math.201 (2015), 773–844].
We devise schemes for producing, in the least possible time, p identical objects with n agents that work at differing speeds. This involves halting the process to transfer production across agent types. For the case of two types of agent, we construct schemes based on the Euclidean algorithm that seeks to minimize the number of pauses in production.