To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We apply Angehrn-Siu-Helmke’s method to estimate basepoint freeness thresholds of higher dimensional polarized abelian varieties. We showed that a conjecture of Caucci holds for very general polarized abelian varieties in the moduli spaces $\mathcal {A}_{g, l}$ with only finitely many possible exceptions of primitive polarization types l in each dimension g. We improved the bound of basepoint freeness thresholds of any polarized abelian $4$-folds and simple abelian $5$-folds.
We first provide a detailed proof of Kato’s classification theorem of log p-divisible groups over a Noetherian Henselian local ring. Exploring Kato’s idea further, we then define the notion of a standard extension of a classical finite étale group scheme (resp. classical étale p-divisible group) by a classical finite flat group scheme (resp. classical p-divisible group) in the category of finite Kummer flat group log schemes (resp. log p-divisible groups), with respect to a given chart on the base. These results are then used to prove that log p-divisible groups are formally log smooth. We then study the finite Kummer flat group log schemes $T_n(\mathbf {M}):=H^{-1}(\mathbf {M}\otimes _{{\mathbb Z}}^L{\mathbb Z}/n{\mathbb Z})$ (resp. the log p-divisible group $\mathbf {M}[p^{\infty }]$) of a log 1-motive $\mathbf {M}$ over an fs log scheme and show that they are étale locally standard extensions. Lastly, we give a proof of the Serre–Tate theorem for log abelian varieties with constant degeneration.
Let V be a smooth quasi-projective complex surface such that the first three logarithmic plurigenera $\overline P_1(V)$, $\overline P_2(V)$ and $\overline P_3(V)$ are equal to 1 and the logarithmic irregularity $\overline q(V)$ is equal to $2$. We prove that the quasi-Albanese morphism $a_V\colon V\to A(V)$ is birational and there exists a finite set S such that $a_V$ is proper over $A(V)\setminus S$, thus giving a sharp effective version of a classical result of Iitaka [12].
We bound from below the complexity of the top Chern class $\lambda _g$ of the Hodge bundle in the Chow ring of the moduli space of curves: no formulas for $\lambda _g$ in terms of classes of degrees 1 and 2 can exist. As a consequence of the Torelli map, the 0-section over the second Voronoi compactification of the moduli of principally polarized abelian varieties also cannot be expressed in terms of classes of degree 1 and 2. Along the way, we establish new cases of Pixton's conjecture for tautological relations. In the log Chow ring of the moduli space of curves, however, we prove $\lambda _g$ lies in the subalgebra generated by logarithmic boundary divisors. The proof is effective and uses Pixton's double ramification cycle formula together with a foundational study of the tautological ring defined by a normal crossings divisor. The results open the door to the search for simpler formulas for $\lambda _g$ on the moduli of curves after log blow-ups.
We prove new results on the distribution of rational points on ramified covers of abelian varieties over finitely generated fields $k$ of characteristic zero. For example, given a ramified cover $\pi : X \to A$, where $A$ is an abelian variety over $k$ with a dense set of $k$-rational points, we prove that there is a finite-index coset $C \subset A(k)$ such that $\pi (X(k))$ is disjoint from $C$. Our results do not seem to be in the range of other methods available at present; they confirm predictions coming from Lang's conjectures on rational points, and also go in the direction of an issue raised by Serre regarding possible applications to the inverse Galois problem. Finally, the conclusions of our work may be seen as a sharp version of Hilbert's irreducibility theorem for abelian varieties.
Let $p$ be a prime number. Kęstutis Česnavičius proved that for an abelian variety $A$ over a global field $K$, the $p$-Selmer group $\mathrm {Sel}_{p}(A/L)$ grows unboundedly when $L$ ranges over the $(\mathbb {Z}/p\mathbb {Z})$-extensions of $K$. Moreover, he raised a further problem: is $\dim _{\mathbb {F}_{p}} \text{III} (A/L) [p]$ also unbounded under the above conditions? In this paper, we give a positive answer to this problem in the case $p \neq \mathrm {char}\,K$. As an application, this result enables us to generalize the work of Clark, Sharif and Creutz on the growth of potential $\text{III}$ in cyclic extensions. We also answer a problem proposed by Lim and Murty concerning the growth of the fine Tate–Shafarevich groups.
Given a singular modulus $j_0$ and a set of rational primes S, we study the problem of effectively determining the set of singular moduli j such that $j-j_0$ is an S-unit. For every $j_0 \neq 0$, we provide an effective way of finding this set for infinitely many choices of S. The same is true if $j_0=0$ and we assume the Generalised Riemann Hypothesis. Certain numerical experiments will also lead to the formulation of a “uniformity conjecture” for singular S-units.
We formulate a strengthening of the Zariski dense orbit conjecture for birational maps of dynamical degree one. So, given a quasiprojective variety X defined over an algebraically closed field K of characteristic $0$, endowed with a birational self-map $\phi $ of dynamical degree $1$, we expect that either there exists a nonconstant rational function $f:X\dashrightarrow \mathbb {P} ^1$ such that $f\circ \phi =f$, or there exists a proper subvariety $Y\subset X$ with the property that, for any invariant proper subvariety $Z\subset X$, we have that $Z\subseteq Y$. We prove our conjecture for automorphisms $\phi $ of dynamical degree $1$ of semiabelian varieties X. Moreover, we prove a related result for regular dominant self-maps $\phi $ of semiabelian varieties X: assuming that $\phi $ does not preserve a nonconstant rational function, we have that the dynamical degree of $\phi $ is larger than $1$ if and only if the union of all $\phi $-invariant proper subvarieties of X is Zariski dense. We give applications of our results to representation-theoretic questions about twisted homogeneous coordinate rings associated with abelian varieties.
Let $p$ be a rational prime, let $F$ denote a finite, unramified extension of ${{\mathbb {Q}}}_p$, let $K$ be the maximal unramified extension of ${{\mathbb {Q}}}_p$, ${{\overline {K}}}$ some fixed algebraic closure of $K$, and ${{\mathbb {C}}}_p$ be the completion of ${{\overline {K}}}$. Let $G_F$ be the absolute Galois group of $F$. Let $A$ be an abelian variety defined over $F$, with good reduction. Classically, the Fontaine integral was seen as a Hodge–Tate comparison morphism, i.e. as a map $\varphi _{A} \otimes 1_{{{\mathbb {C}}}_p}\colon T_p(A)\otimes _{{{\mathbb {Z}}}_p}{{\mathbb {C}}}_p\to \operatorname {Lie}(A)(F)\otimes _F{{\mathbb {C}}}_p(1)$, and as such it is surjective and has a large kernel. This paper starts with the observation that if we do not tensor $T_p(A)$ with ${{\mathbb {C}}}_p$, then the Fontaine integral is often injective. In particular, it is proved that if $T_p(A)^{G_K} = 0$, then $\varphi _A$ is injective. As an application, we extend the Fontaine integral to a perfectoid like universal cover of $A$ and show that if $T_p(A)^{G_K} = 0$, then $A(\overline {K})$ has a type of $p$-adic uniformization, which resembles the classical complex uniformization.
We construct the logarithmic and tropical Picard groups of a family of logarithmic curves and realize the latter as the quotient of the former by the algebraic Jacobian. We show that the logarithmic Jacobian is a proper family of logarithmic abelian varieties over the moduli space of Deligne–Mumford stable curves, but does not possess an underlying algebraic stack. However, the logarithmic Picard group does have logarithmic modifications that are representable by logarithmic schemes, all of which are obtained by pullback from subdivisions of the tropical Picard group.
We prove that torsion codimension $2$ algebraic cycles modulo rational equivalence on supersingular abelian varieties are algebraically equivalent to zero. As a consequence, we prove that homological equivalence coincides with algebraic equivalence for algebraic cycles of codimension $2$ on supersingular abelian varieties over the algebraic closure of finite fields.
We study the p-rank stratification of the moduli space of cyclic degree $\ell $ covers of the projective line in characteristic p for distinct primes p and $\ell $. The main result is about the intersection of the p-rank $0$ stratum with the boundary of the moduli space of curves. When $\ell =3$ and $p \equiv 2 \bmod 3$ is an odd prime, we prove that there exists a smooth trielliptic curve in characteristic p, for every genus g, signature type $(r,s)$, and p-rank f satisfying the clear necessary conditions.
Investigating a conjecture of Zannier, we study irreducible subvarieties of abelian schemes that dominate the base and contain a Zariski dense set of torsion points that lie on pairwise isogenous fibers. If everything is defined over the algebraic numbers and the abelian scheme has maximal variation, we prove that the geometric generic fiber of such a subvariety is a union of torsion cosets. We go on to prove fully or partially explicit versions of this result in fibered powers of the Legendre family of elliptic curves. Finally, we apply a recent result of Galateau and Martínez to obtain uniform bounds on the number of maximal torsion cosets in the Manin–Mumford problem across a given isogeny class. For the proofs, we adapt the strategy, due to Lang, Serre, Tate, and Hindry, of using Galois automorphisms that act on the torsion as homotheties to the family setting.
For an (irreducible) recurrence equation with coefficients from $\mathbb Z[n]$ and its two linearly independent rational solutions $u_n,v_n$, the limit of $u_n/v_n$ as $n\to \infty $, when it exists, is called the Apéry limit. We give a construction that realises certain quotients of L-values of elliptic curves as Apéry limits.
We prove a formula, which, given a principally polarized abelian variety $(A,\lambda )$ over the field of algebraic numbers, relates the stable Faltings height of $A$ with the Néron–Tate height of a symmetric theta divisor on $A$. Our formula completes earlier results due to Bost, Hindry, Autissier and Wagener. The local non-archimedean terms in our formula can be expressed as the tropical moments of the tropicalizations of $(A,\lambda )$.
We give a corrected version of Theorem 3, Lemma 4, and Proposition 9 in the above-mentioned paper, which are incorrect as stated (as was pointed out by O. Gabber).
In this note, we will apply the results of Gross–Zagier, Gross–Kohnen–Zagier and their generalizations to give a short proof that the differences of singular moduli are not units. As a consequence, we obtain a result on isogenies between reductions of CM elliptic curves.
Given a compact Kähler manifold X, it is shown that pairs of the form $(E,\, D)$, where E is a trivial holomorphic vector bundle on X, and D is an integrable holomorphic connection on E, produce a neutral Tannakian category. The corresponding pro-algebraic affine group scheme is studied. In particular, it is shown that this pro-algebraic affine group scheme for a compact Riemann surface determines uniquely the isomorphism class of the Riemann surface.
We define két abelian schemes, két 1-motives and két log 1-motives and formulate duality theory for these objects. Then we show that tamely ramified strict 1-motives over a discrete valuation field can be extended uniquely to két log 1-motives over the corresponding discrete valuation ring. As an application, we present a proof to a result of Kato stated in [12, §4.3] without proof. To a tamely ramified strict 1-motive over a discrete valuation field, we associate a monodromy pairing and compare it with Raynaud’s geometric monodromy.