To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the existence of 4-torsion in the integral cohomology of oriented Grassmannians. We establish bounds on the characteristic rank of oriented Grassmannians and prove some cases of our previous conjecture on the characteristic rank. We also discuss the relation between the characteristic rank and a result of Stong on the height of w1 in the cohomology of Grassmannians. The existence of 4-torsion classes follows from the results on the characteristic rank via Steenrod square considerations. We thus exhibit infinitely many examples of 4-torsion classes for oriented Grassmannians. We also prove bounds on torsion exponents of oriented flag manifolds. The article also discusses consequences of our results for a more general perspective on the relation between the torsion exponent and deficiency for homogeneous spaces.
In this paper we prove a new generic vanishing theorem for $X$ a complete homogeneous variety with respect to an action of a connected algebraic group. Let $A, B_0\subset X$ be locally closed affine subvarieties, and assume that $B_0$ is smooth and pure dimensional. Let ${\mathcal {P}}$ be a perverse sheaf on $A$ and let $B=g B_0$ be a generic translate of $B_0$. Then our theorem implies $(-1)^{\operatorname {codim} B}\chi (A\cap B, {\mathcal {P}}|_{A\cap B})\geq 0$. As an application, we prove in full generality a positivity conjecture about the signed Euler characteristic of generic triple intersections of Schubert cells. Such Euler characteristics are known to be the structure constants for the multiplication of the Segre–Schwartz–MacPherson classes of these Schubert cells.
Chow rings of flag varieties have bases of Schubert cycles $\sigma _u $, indexed by permutations. A major problem of algebraic combinatorics is to give a positive combinatorial formula for the structure constants of this basis. The celebrated Littlewood–Richardson rules solve this problem for special products $\sigma _u \cdot \sigma _v$, where u and v are p-Grassmannian permutations.
Building on work of Wyser, we introduce backstable clans to prove such a rule for the problem of computing the product $\sigma _u \cdot \sigma _v$ when u is p-inverse Grassmannian and v is q-inverse Grassmannian. By establishing several new families of linear relations among structure constants, we further extend this result to obtain a positive combinatorial rule for $\sigma _u \cdot \sigma _v$ in the case that u is covered in weak Bruhat order by a p-inverse Grassmannian permutation and v is a q-inverse Grassmannian permutation.
Given any toric subvariety Y of a smooth toric variety X of codimension k, we construct a length k resolution of ${\mathcal O}_Y$ by line bundles on X. Furthermore, these line bundles can all be chosen to be direct summands of the pushforward of ${\mathcal O}_X$ under the map of toric Frobenius. The resolutions are built from a stratification of a real torus that was introduced by Bondal and plays a role in homological mirror symmetry.
As a corollary, we obtain a virtual analogue of Hilbert’s syzygy theorem for smooth projective toric varieties conjectured by Berkesch, Erman and Smith. Additionally, we prove that the Rouquier dimension of the bounded derived category of coherent sheaves on a toric variety is equal to the dimension of the variety, settling a conjecture of Orlov for these examples. We also prove Bondal’s claim that the pushforward of the structure sheaf under toric Frobenius generates the derived category of a smooth toric variety and formulate a refinement of Uehara’s conjecture that this remains true for arbitrary line bundles.
Mirror symmetry for a semistable degeneration of a Calabi–Yau manifold was first investigated by Doran–Harder–Thompson when the degenerate fiber is a union of two quasi-Fano manifolds. They proposed a topological construction of a mirror Calabi–Yau by gluing of two Landau–Ginzburg models that are mirror to those Fano manifolds. We extend this construction to a general type semistable degeneration where the dual boundary complex of the degenerate fiber is the standard N-simplex. Since each component in the degenerate fiber comes with the simple normal crossing anticanonical divisor, one needs the notion of a hybrid Landau–Ginzburg model – a multipotential analogue of classical Landau–Ginzburg models. We show that these hybrid Landau–Ginzburg models can be glued to be a topological mirror candidate for the nearby Calabi–Yau, which also exhibits the structure of a Calabi–Yau fibration over $\mathbb P^N$. Furthermore, it is predicted that the perverse Leray filtration associated to this fibration is mirror to the monodromy weight filtration on the degeneration side [12]. We explain how this can be deduced from the original mirror P=W conjecture [18].
We classify hyperbolic polynomials in two real variables that admit a transitive action on some component of their hyperbolic level sets. Such surfaces are called special homogeneous surfaces, and they are equipped with a natural Riemannian metric obtained by restricting the negative Hessian of their defining polynomial. Independent of the degree of the polynomials, there exist a finite number of special homogeneous surfaces. They are either flat, or have constant negative curvature.
We give a short new proof of a recent result of Hanlon-Hicks-Lazarev about toric varieties. As in their work, this leads to a proof of a conjecture of Berkesch-Erman-Smith on virtual resolutions and to a resolution of the diagonal in the simplicial case.
The K-theoretic Schur P- and Q-functions $G\hspace {-0.2mm}P_\lambda $ and $G\hspace {-0.2mm}Q_\lambda $ may be concretely defined as weight-generating functions for semistandard shifted set-valued tableaux. These symmetric functions are the shifted analogues of stable Grothendieck polynomials and were introduced by Ikeda and Naruse for applications in geometry. Nakagawa and Naruse specified families of dual K-theoretic Schur P- and Q-functions $g\hspace {-0.1mm}p_\lambda $ and $g\hspace {-0.1mm}q_\lambda $ via a Cauchy identity involving $G\hspace {-0.2mm}P_\lambda $ and $G\hspace {-0.2mm}Q_\lambda $. They conjectured that the dual power series are weight-generating functions for certain shifted plane partitions. We prove this conjecture. We also derive a related generating function formula for the images of $g\hspace {-0.1mm}p_\lambda $ and $g\hspace {-0.1mm}q_\lambda $ under the $\omega $ involution of the ring of symmetric functions. This confirms a conjecture of Chiu and the second author. Using these results, we verify a conjecture of Ikeda and Naruse that the $G\hspace {-0.2mm}Q$-functions are a basis for a ring.
The $\Delta $-Springer varieties are a generalization of Springer fibers introduced by Levinson, Woo and the author that have connections to the Delta Conjecture from algebraic combinatorics. We prove a positive Hall–Littlewood expansion formula for the graded Frobenius characteristic of the cohomology ring of a $\Delta $-Springer variety. We do this by interpreting the Frobenius characteristic in terms of counting points over a finite field $\mathbb {F}_q$ and partitioning the $\Delta $-Springer variety into copies of Springer fibers crossed with affine spaces. As a special case, our proof method gives a geometric meaning to a formula of Haglund, Rhoades and Shimozono for the Hall–Littlewood expansion of the symmetric function in the Delta Conjecture at $t=0$.
The Manin–Peyre conjecture is established for a class of smooth spherical Fano varieties of semisimple rank one. This includes all smooth spherical Fano threefolds of type T as well as some higher-dimensional smooth spherical Fano varieties.
In this article, we establish the Grothendieck–Serre conjecture over valuation rings: for a reductive group scheme $G$ over a valuation ring $V$ with fraction field $K$, a $G$-torsor over $V$ is trivial if it is trivial over $K$. This result is predicted by the original Grothendieck–Serre conjecture and the resolution of singularities. The novelty of our proof lies in overcoming subtleties brought by general nondiscrete valuation rings. By using flasque resolutions and inducting with local cohomology, we prove a non-Noetherian counterpart of Colliot-Thélène–Sansuc's case of tori. Then, taking advantage of techniques in algebraization, we obtain the passage to the Henselian rank-one case. Finally, we induct on Levi subgroups and use the integrality of rational points of anisotropic groups to reduce to the semisimple anisotropic case, in which we appeal to properties of parahoric subgroups in Bruhat–Tits theory to conclude. In the last section, by using extension properties of reflexive sheaves on formal power series over valuation rings and patching of torsors, we prove a variant of Nisnevich's purity conjecture.
Let $f_0$ and $f_1$ be two homogeneous polynomials of degree d in three complex variables $z_1,z_2,z_3$. We show that the Lê–Yomdin surface singularities defined by $g_0:=f_0+z_i^{d+m}$ and $g_1:=f_1+z_i^{d+m}$ have the same abstract topology, the same monodromy zeta-function, the same $\mu ^*$-invariant, but lie in distinct path-connected components of the $\mu ^*$-constant stratum if their projective tangent cones (defined by $f_0$ and $f_1$, respectively) make a Zariski pair of curves in $\mathbb {P}^2$, the singularities of which are Newton non-degenerate. In this case, we say that $V(g_0):=g_0^{-1}(0)$ and $V(g_1):=g_1^{-1}(0)$ make a $\mu ^*$-Zariski pair of surface singularities. Being such a pair is a necessary condition for the germs $V(g_0)$ and $V(g_1)$ to have distinct embedded topologies.
We prove that double Schubert polynomials have the saturated Newton polytope property. This settles a conjecture by Monical, Tokcan and Yong. Our ideas are motivated by the theory of multidegrees. We introduce a notion of standardization of ideals that enables us to study nonstandard multigradings. This allows us to show that the support of the multidegree polynomial of each Cohen–Macaulay prime ideal in a nonstandard multigrading, and in particular, that of each Schubert determinantal ideal is a discrete polymatroid.
We use the geometry of the stellahedral toric variety to study matroids. We identify the valuative group of matroids with the cohomology ring of the stellahedral toric variety and show that valuative, homological and numerical equivalence relations for matroids coincide. We establish a new log-concavity result for the Tutte polynomial of a matroid, answering a question of Wagner and Shapiro–Smirnov–Vaintrob on Postnikov–Shapiro algebras, and calculate the Chern–Schwartz–MacPherson classes of matroid Schubert cells. The central construction is the ‘augmented tautological classes of matroids’, modeled after certain toric vector bundles on the stellahedral toric variety.
Let $X$ be a smooth projective variety defined over an algebraically closed field of positive characteristic $p$ whose tangent bundle is nef. We prove that $X$ admits a smooth morphism $X \to M$ such that the fibers are Fano varieties with nef tangent bundle and $T_M$ is numerically flat. We also prove that extremal contractions exist as smooth morphisms. As an application, we prove that, if the Frobenius morphism can be lifted modulo $p^2$, then $X$ admits, up to a finite étale Galois cover, a smooth morphism onto an ordinary abelian variety whose fibers are products of projective spaces.
We use the tropical geometry approach to compute absolute and relative enumerative invariants of complex surfaces which are $\mathbb {C} P^1$-bundles over an elliptic curve. We also show that the tropical multiplicity used to count curves can be refined by the standard Block–Göttsche refined multiplicity to give tropical refined invariants. We then give a concrete algorithm using floor diagrams to compute these invariants along with the associated interpretation as operators acting on some Fock space. The floor diagram algorithm allows one to prove the piecewise polynomiality of the relative invariants, and the quasi-modularity of their generating series.
Let $X_4\subset \mathbb {P}^{n+1}$ be a quartic hypersurface of dimension $n\geq 4$ over an infinite field k. We show that if either $X_4$ contains a linear subspace $\Lambda $ of dimension $h\geq \max \{2,\dim (\Lambda \cap \operatorname {\mathrm {Sing}}(X_4))+2\}$ or has double points along a linear subspace of dimension $h\geq 3$, a smooth k-rational point and is otherwise general, then $X_4$ is unirational over k. This improves previous results by A. Predonzan and J. Harris, B. Mazur and R. Pandharipande for quartics. We also provide a density result for the k-rational points of quartic $3$-folds with a double plane over a number field, and several unirationality results for quintic hypersurfaces over a $C_r$ field.
We show that a sufficiently general hypersurface of degree d in $\mathbb {P}^n$ admits a toric Gröbner degeneration after linear change of coordinates if and only if $d\leq 2n-1$.
We provide a criterion for a coherent sheaf to be an Ulrich sheaf in terms of a certain bilinear form on its global sections. When working over the real numbers, we call it a positive Ulrich sheaf if this bilinear form is symmetric or Hermitian and positive-definite. In that case, our result provides a common theoretical framework for several results in real algebraic geometry concerning the existence of algebraic certificates for certain geometric properties. For instance, it implies Hilbert’s theorem on nonnegative ternary quartics, via the geometry of del Pezzo surfaces, and the solution of the Lax conjecture on plane hyperbolic curves due to Helton and Vinnikov.
This papers classifies toric Fano threefolds with singular locus $\{ \frac {1}{k}(1,1,1) \}$ for $k \in \mathbb {Z}_{\geq 1}$ building on the work of Batyrev (1981, Nauk SSSR Ser. Mat. 45, 704–717) and Watanabe–Watanabe (1982, Tokyo J. Math. 5, 37–48). This is achieved by completing an equivalent problem in the language of Fano polytopes. Furthermore, we identify birational relationships between entries of the classification. For a fixed value $k \geq 4$, there are exactly two such toric Fano threefolds linked by a blowup in a torus-invariant line.