To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We realize the multiplihedron geometrically as the moduli space of stable quilted disks. This generalizes the geometric realization of the associahedron as the moduli space of stable disks. We show that this moduli space is the non-negative real part of a complex moduli space of stable scaled marked curves.
Toric log del Pezzo surfaces correspond to convex lattice polygons containing the origin in their interior and having only primitive vertices. Upper bounds on the volume and on the number of boundary lattice points of these polygons are derived in terms of the index ℓ. Techniques for classifying these polygons are also described: a direct classification for index two is given, and a classification for all ℓ≤16 is obtained.
Viro method plays an important role in the study of topology of real algebraic hypersurfaces. The T-primitive hypersurfaces we study here appear as the result of Viro's combinatorial patchworking when one starts with a primitive triangulation. We show that the Euler characteristic of the real part of such a hypersurface of even dimension is equal to the signature of its complex part. We explain how this can be understood in tropical geometry. We use this result to prove the existence of maximal surfaces in some three-dimensional toric varieties, namely those corresponding to Nakajima polytopes.
The face ring of a homology manifold (without boundary) modulo a generic system of parameters is studied. Its socle is computed and it is verified that a particular quotient of this ring is Gorenstein. This fact is used to prove that the algebraic g-conjecture for spheres implies all enumerative consequences of its far-reaching generalization (due to Kalai) to manifolds. A special case of Kalai’s conjecture is established for homology manifolds that have a codimension-two face whose link contains many vertices.
Let be a finite-dimensional vector space over a square-root closed ordered field (this restriction permits an inner product with corresponding norm to be imposed on ). Many properties of the family :=() of convex polytopes in can be expressed in terms of valuations (or finitely additive measures). Valuations such as volume, surface area and the Euler characteristic are translation invariant, but others, such as the moment vector and inertia tensor, display a polynomial behaviour under translation. The common framework for such valuations is the polytope (or Minkowski) ring Π:=Π(), and its quotients under various powers of the ideal T of Π which is naturally associated with translations. A central result in the theory is that, in all but one trivial respect, the ring Π/T is actually a graded algebra over . Unfortunately, while the quotients Π/Tk+1 are still graded rings for k > 1, they now only possess a rational algebra structure; to obtain an algebra over , some (weak) continuity assumptions have to be made, although these can be achieved algebraically, by factoring out a further ideal A, the algebra ideal.
The Ehrhart polynomials for the class of 0-symmetric convex lattice polytopes in Euclidean n-space ℝn are investigated. It turns out that the roots of the Ehrhart polynomial and Minkowski's successive minima of such polytopes are closely related by their geometric and arithmetic means. It is also shown that the roots of the Ehrhart polynomials of lattice n-polytopes with or without interior lattice points differ essentially. Furthermore, the structure of the roots in the planar case is studied. Here it turns out that their distribution reflects basic properties of lattice polygons.
Equifacetal simplices, all of whose codimension one faces are congruent to one another, are studied. It is shown that the isometry group of such a simplex acts transitively on its set of vertices and, as an application, equifacetal simplices are shown to have unique centres. It is conjectured that a simplex with a unique centre must be equifacetal. The notion of the combinatorial type of an equifacetal simplex is introduced and analysed, and all possible combinatorial types of equifacetal simplices are constructed in even dimensions.
Voronoĭ conjectured that every parallelotope is affinely equivalent to a Voronoĭ polytope. For some m, a parallelotope is defined by a set of m facet vectors pi, and defines a set of m lattice vectors ti, for 1≤i≤m. It is shown that Voronoĭ's conjecture is true for an n-dimensional parallelotope P if and only if there exist scalars γi, and a positive definite n × n matrix Q such that γipi = Qti for each i. In this case, the quadratic form f(x) = xTQx is the metric form of P.
It is shown that, for any lattice polytope P⊂ℝd the set int (P)∩lℤd (provided that it is non-empty) contains a point whose coefficient of asymmetry with respect to P is at most 8d · (8l+7)22d+1. If, moreover, P is a simplex, then this bound can be improved to 8 · (8l+7 )2d+1. As an application, new upper bounds on the volume of a lattice polytope are deduced, given its dimension and the number of sublattice points in its interior.
This paper is concerned with convex bodies in n-dimensional lp, spaces, where each body is accessible only by a weak separation or optimization oracle. It studies the asymptotic relative accuracy, as n→∞, of polynomial-time approximation algorithms for the diameter, width, circumradius, and inradius of a body K, and also for the maximum of the norm over K.
Consider a convex polytope X and a family of convex sets, satisfying a given property P. Moreover, assume that is closed under operations of cutting and convex pasting along hyperplanes. Necessary and sufficient conditions are given to have . As a consequence, it follows that, if all simplices or small enough simplices have the property in question, then X also has that property.
Let P⊂ℝ2 be a polyhedron, that is, the intersection of a finite number of closed half-spaces, and suppose that its characteristic function lP can be expressed as a linear combination
where each Ai is a relatively open and convex set. Let n(P) be the number of all non-empty facets of P. One of the main objectives of this paper is to show that
Recently Edelman and Reiner suggested two poset structures, (n, d) and (n, d) on the set of all triangulations of the cyclic d-polytope C(n, d) with n vertices. Both posets are generalizations of the well-studied Tamari lattice. While (n, d) is bounded by definition, the same is not obvious for (n, d). In the paper by Edelman and Reiner the bounds of (n, d) were also confirmed for (n, d) whenever d≤5, leaving the general case as a conjecture.
Decompositions of simply connected 4-manifolds into three closed 4-balls are studied from the view-point of abstract regular polytopes of Schläfli type {p, q, 2, 3}. The three balls correspond to three ditopes, their common intersection corresponds to a regular map of type {p, q} as an equilibrium surface whose genus equals the “genus” of the 4-manifold.
We recall that if S is a d - simplex then each facet and each vertex figure of S is a (d − 1)-simplex and S is a self-dual. We introduce a d-polytope P, called a d-multiplex, with the property that each facet and each vertex figure of P is a (d − 1)-multiplex and P is self-dual.
Recently M. M. Kapranov [Kap] defined a poset KPAn−1, called the permuto-associahedron, which is a hybrid between the face poset of the permutohedron and the associahedron. Its faces are the partially parenthesized, ordered, partitions of the set {1, 2, …, n}, with a natural partial order.
Kapranov showed that KPAn−1, is the face poset of a regular CW-ball, and explored its connection with a category-theoretic result of MacLane, Drinfeld's work on the Knizhnik-Zamolodchikov equations, and a certain moduli space of curves. He also asked the question of whether this CW-ball can be realized as a convex polytope.
We show that indeed, the permuto-associahedron corresponds to the type An−1, in a family of convex polytopes KPW associated to the classical Coxeter groups, W = An−1, Bn, Dn. The embedding of these polytopes relies on the secondary polytope construction of the associahedron due to Gel'fand, Kapranov, and Zelevinsky. Our proofs yield integral coordinates, with all vertices on a sphere, and include a complete description of the facet-defining inequalities.
Also we show that for each W, the dual polytope KPW* is a refinement (as a CW-complex) of the Coxeter complex associated to W, and a coarsening of the barycentric subdivision of the Coxeter complex. In the case W = An−1, this gives a combinatorial proof of Kapranov's original sphericity result.
The construction of the fiber polytope ∑(P, Q) of a projection π:P→Q of polytopes is extended to flags of projections. While the faces of the fiber polytope are related to subdivisions of Q induced by the faces of P, those of an iterated fiber polytope are related to discrete homotopies between polyhedral subdivisions. In particular, in the case of projections
starting with an (n + 1)-simplex, vertices of the successive iterates correspond to, respectively, subsets, permutations and sequences of permutations of an n-set. The first iterate will always be combinatorially an n-cube, and, under certain conditions, the second will have the structure of the (n−1)-dimensional permutohedron.
An explicit formula is given for the volume of the polar dual of a polytope. Using this formula, we prove a geometric criterion for critical (w.r.t. volume) sections of a regular simplex.