To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Distance measurements are useful tools in stochastic geometry. For a Boolean model Z in ℝd, the classical contact distribution functions allow the estimation of important geometric parameters of Z. In two previous papers, several types of generalized contact distributions have been investigated and applied to stationary and nonstationary Boolean models. Here, we consider random sets Z which are generated as the union sets of Poisson processes X of k-flats, k ∈ {0, …, d-1}, and study distances from a fixed point or a fixed convex body to Z. In addition, we also consider the distances from a given flat or a flag consisting of flats to the individual members of X and investigate the associated process of nearest points in the flats of X. In particular, we discuss to which extent the directional distribution of X is determined by this point process. Some of our results are presented for more general stationary processes of flats.
We determine the naturally reductive homogeneous real hypersurfaces in the family of curvature-adapted real hypersurfaces in quaternionic projective space HPn(n ≥ 3). We conclude that the naturally reductive curvature-adapted real hypersurfaces in HPn are Q-quasiumbilical and vice-versa. Further, we study the same problem in quaternionic hyperbolic space HHn(n ≥ 3).
Let be the mean normal measure of a stationary random set Z in the extended convex ring in ℝd. For k ∈ {1,…,d-1}, connections are shown between and the mean of . Here, the mean is understood to be with respect to the random isotropic k-dimensional linear subspace ξk and the mean normal measure of the intersection is computed in ξk. This mean to be well defined, a suitable spherical lifting must be applied to before averaging. A large class of liftings and their resulting means are discussed. In particular, a geometrically motivated lifting is presented, for which the mean of liftings of determines uniquely for any fixed k ∈ {2,…,d-1}.
Recently, systematic sampling on the circle and the sphere has been studied by Gual-Arnau and Cruz-Orive (2000) from a design-based point of view. In this note, it is shown that their mathematical model for the covariogram is, in a model-based statistical setting, a special case of the p-order shape model suggested by Hobolth, Pedersen and Jensen (2000) and Hobolth, Kent and Dryden (2002) for planar objects without landmarks. Benefits of this observation include an alternative variance estimator, applicable in the original problem of systematic sampling. In a wider perspective, the paper contributes to the discussion concerning design-based versus model-based stereology.
Geometric sampling, and local stereology in particular, often require observations at isotropic random directions on the sphere, and some sort of systematic design on the sphere becomes necessary on grounds of efficiency and practical applicability. Typically, the relevant probes are of nucleator type, in which several rays may be contained in a sectioning plane through a fixed point (e.g. through a nucleolus within a biological cell). The latter requirement considerably reduces the choice of design in practice; in this paper, we concentrate on a nucleator design based on splitting the sphere into regions of equal area, but not of identical shape; this design is pseudosystematic rather than systematic in a strict sense. Firstly, we obtain useful exact representations of the variance of an estimator under pseudosystematic sampling on the sphere. Then we adopt a suitable covariogram model to obtain a variance predictor from a single sample of arbitrary size, and finally we examine the prediction accuracy by way of simulation on a synthetic particle model.
Recently, Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for a submanifold in a Riemannian space form with arbitrary codimension. Afterwards, we dealt with similar problems for submanifolds in complex space forms.
In the present paper, we obtain sharp inequalities between the Ricci curvature and the squared mean curvature for submanifolds in Sasakian space forms. Also, estimates of the scalar curvature and the k-Ricci curvature respectively, in terms of the squared mean curvature, are proved.
The set covariance of a dead leaves model, constructed from hard spheres of constant diameter, is calculated analytically. The calculation is based on the covariance of a single sphere and on the pair correlation function of the centres of the spheres. There exist applications in the field of random sequential adsorption and in the interpretation of small-angle scattering experiments.
The main purpose of this work is to study and apply generalized contact distributions of (inhomogeneous) Boolean models Z with values in the extended convex ring. Given a convex body L ⊂ ℝd and a gauge body B ⊂ ℝd, such a generalized contact distribution is the conditional distribution of the random vector (dB(L,Z),uB(L,Z),pB(L,Z),lB(L,Z)) given that Z∩L = ∅, where Z is a Boolean model, dB(L,Z) is the distance of L from Z with respect to B, pB(L,Z) is the boundary point in L realizing this distance (if it exists uniquely), uB(L,Z) is the corresponding boundary point of B (if it exists uniquely) and lB(L,·) may be taken from a large class of locally defined functionals. In particular, we pursue the question of the extent to which the spatial density and the grain distribution underlying an inhomogeneous Boolean model Z are determined by the generalized contact distributions of Z.
A pseudo-Riemannian manifold is said to be timelike (spacelike) Osserman if the Jordan form of the Jacobi operator Kx is independent of the particular unit timelike (spacelike) tangent vector X. The first main result is that timelike (spacelike) Osserman manifold (M, g) of signature (2, 2) with the diagonalizable Jacobi operator is either locally rank-one symmetric or flat. In the nondiagonalizable case the characteristic polynomial of Kx has to have a triple zero, which is the other main result. An important step in the proof is based on Walker's study of pseudo-Riemannian manifolds admitting parallel totally isotropic distributions. Also some interesting additional geometric properties of Osserman type manifolds are established. For the nondiagonalizable Jacobi operators some of the examples show a nature of the Osserman condition for Riemannian manifolds different from that of pseudo-Riemannian manifolds.
Let Mn, n ≥ 3, be a complete oriented minimal hypersurface in Euclidean space Rn+1. It is shown that, if the total scalar curvature on M is less than the n/2 power of 1/2Cs, where Cs is the Sobolev constant for M, and the square norm of the second fundamental form is a L2 function, then M is a hyperplane.
In this paper we construct a family of variational families for a Legendrian embedding, into the 1-jet bundle of a closed manifold, that can be obtained from the zero section through Legendrian embdeddings, by discretising the action functional. We compute the second variation of a generating funciton obtained as above at a nondegenerate critical point and prove a formula relating the signature of the second variation to the Maslov index as the mesh goes to zero. We use this to prove a generlisation of the Morse inequalities thus refining a theorem of Chekanov.
Useful approximations have been developed along the years to predict the precision of systematic sampling for measurable functions of a bounded support in ℝd. Recently, the theory of systematic sampling on ℝ has received a thrust. In geometric sampling, design based unbiased estimators exist, however, which imply systematic sampling on the circle (𝕊1) and the semicircle (ℍ1); the planimeter estimator of an area, or the Buffon-Steinhaus estimator of curve length in the plane constitute popular examples. Over the last two decades, many other estimators of geometric measures have been obtained which imply systematic sampling also on the sphere (𝕊2). In this paper we adapt the theory available for non-periodic functions of bounded support on ℝ to periodic functions, and thereby to 𝕊1 and ℍ1, and we obtain new estimators of the corresponding variance approximations. Further we consider - we believe for the first time - the problem of predicting the precision of systematic sampling in 𝕊2. The paper starts with a historical perspective, and ends with suggestions for further research.
This paper investigates complete space-like submainfold with parallel mean curvature vector in the de Sitter space. Some pinching theorems on square of the norm of the second fundamental form are given
In this work we study the behaviour of compact, smooth, orientable, spacelike hypersurfaces without boundary, which are immersed in cosmological spacetimes and move under the inverse mean curvature flow. We prove longtime existence and regularity of a solution to the corresponding nonlinear parabolic system of partial differential equations.
Let M, N be Riemannian manifolds, f: M → N a harmonic map with potential H, namely, a smooth critical point of the functional EH(f) = ∫M[e(f)−H(f)], where e(f) is the energy density of f. Some results concerning the stability of these maps between spheres and any Riemannian manifold are given. For a general class of M, this paper also gives a result on the constant boundary-value problem which generalizes the result of Karcher-Wood even in the case of the usual harmonic maps. It can also be applied to the static Landau-Lifshitz equations.
In this paper, isotropic random projections of d-sets in ℝn are studied, where a d-set is a subset of a d-dimensional affine subspace which satisfies certain regularity conditions. The squared volume reduction induced by the projection of a d-set onto an isotropic random p-subspace is shown to be distributed as a product of independent beta-distributed random variables, for d ≤ p. One of the proofs of this result uses Wilks' lambda distribution from multivariate normal theory. The result is related to Cauchy's and Crofton's formulae in stochastic geometry. In particular, it can be used to give a new and quite simple proof of one of the classical Crofton intersection formulae.
A multisymplectic structure on a manifold is defined by a closed differential form with zero characteristic distribution. Starting from the linear case, some of the basic properties of multisymplectic structures are described. Various examples of multisymplectic manifolds are considered, and special attention is paid to the canonical multisymplectic structure living on a bundle of exterior k-forms on a manifold. For a class of multisymplectic manifolds admitting a ‘Lagrangian’ fibration, a general structure theorem is given which, in particular, leads to a classification of these manifolds in terms of a prescribed family of cohomology classes.
We characterize four-dimensional generalized complex forms and construct an Einstein and weakly *-Einstein Hermitian manifold with pointwise constant holomorphic sectional curvature which is not globally constant.