We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In design-based stereology, fixed parameters (such as volume, surface area, curve length, feature number, connectivity) of a non-random geometrical object are estimated by intersecting the object with randomly located and oriented geometrical probes (e.g. test slabs, planes, lines, points). Estimation accuracy may in principle be increased by increasing the number of probes, which are usually laid in a systematic pattern. An important prerequisite to increase accuracy, however, is that the relevant estimators are unbiased and consistent. The purpose of this paper is therefore to give sufficient conditions for the unbiasedness and strong consistency of design-based stereological estimators obtained by systematic sampling. Relevant mechanisms to increase sample size, compatible with stereological practice, are considered.
In this paper, we give a sufficient condition (Theorem) in order that one domain D1 bounded by a C2-smooth boundary can be enclosed in, or enclose, another domain D0 bounded by the same kind of boundary. A same kind of sufficient condition for convex bodies (Corollary) is also obtained.
We give a sharp lower bound for the first eigenvalue of the Dirichlet eigenvalue problem on a domain of a complex submanifold of a Kaehler manifold with curvature bounded from above. The bound on the first eigenvalue is given as a function of the extrinsic outer radius and the bounds on the curvature, and it is attained only on geodesic spheres of a space of constant holomorphic sectional curvature embedded in the Kaehler manifold as a totally geodesic submanifold.
Unbiased stereological estimators of d-dimensional volume in ℝn are derived, based on information from an isotropic random r-slice through a specified point. The content of the slice can be subsampled by means of a spatial grid. The estimators depend only on spatial distances. As a fundamental lemma, an explicit formula for the probability that an isotropic random r-slice in ℝn through O hits a fixed point in ℝn is given.
We give an account of the minimal volume of the plane, as defined by Gromov, and first computed by Bavard and Pansu. We also describe some related geometric inequalities.
We consider hypersurfaces of En+1 whose position vector x satisfies Δx = Ax + B, where Δ is the induced Laplacian, and prove that these are open parts of minimal hypersurfaces, hyperspheres or generalized circular cylinders.
All manifolds in this paper are assumed to be closed, oriented and smooth.
A contact structure on a (2n + l)-dimensional manifold M is a maximally non-integrable hyperplane distribution D in the tangent bundle TM, i.e., D is locally denned as the kernel of a 1-form α satisfying α ۸ (da)n ۸ 0. A global form satisfying this condition is called a contact form. In the situations we are dealing with, every contact structure will be given by a contact form (see [5]). A manifold admitting a contact structure is called a contact manifold.
A complete classification is given of harmonic morphisms to a surface and conformal foliations by geodesics, with or without isolated singularities, of a simply-connected space form. The method is to associate to any such a holomorphic map from a Riemann surface into the space of geodesics of the space form. Properties such as nonintersecting fibres (or leaves) are translated into conditions on the holomorphic mapping which show it must have a simple form corresponding to a standard example.
Let 0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ … denote the sequence of eigenvalues of the Laplacian of a compact minimal submanifold in a unit sphere. Yang and Yau obtained an upper bound on λn+1 in terms of λn and the sum λ1 + … + λn. In this note we shall prove an improved version of this upper bound by using the method of Hile and Protter.
In the first paper of this series we studied on a compact regular contact manifold the integral of the Ricci curvature in the direction of the characteristic vector field considered as a functional on the set of all associated metrics. We showed that the critical points of this functional are the metrics for which the characteristic vector field generates a 1-parameter group of isometries and conjectured that the result might be true without the regularity of the contact structure. In the present paper we show that this conjecture is false by studying this problem on the tangent sphere bundle of a Riemannian manifold. In particular the standard associated metric is a critical point if and only if the base manifold is of constant curvature +1 or −1; in the latter case the characteristic vector field does not generate a 1-parameter group of isometries.
Simply connected conformally flat Riemannian manifolds are characterized as hypersurfaces in the light cone of a standard flat Lorentzian space, transversal to its generators. Some applications of this fact are given.
We study real hypersurfaces of a complex projection space and show that there are no such hypersurfaces with harmonic curvature on which the structure vector is principal.
We consider the extent of certain complete hypersurfaces of Euclidean space. We prove that every complete hypersurface in En+1 with sectional curvature bounded below and non-positive scalar curvature has at least (n − 1) unbounded coordinate functions.
Let M be a smooth surface in Euclidean space E3 and L the Weingarten map. The fundamental forms I1, I2, I3,… on M are defined in terms of L and the usual inner product 〈, 〉 of E3 as follows. If X and Y are in the tangent space TPM of M (Pε M), then I1(X, Y) = 〈X, Y), I2(X, Y) = 〈LX, Y〉, I3(X, Y) = 〈L2X, Y), etc. Moreover, if M is convex, i.e., the Gaussian curvature K = k1k2, where ki, (i = l,2) are the principal curvatures of M, is everywhere positive, then one can also define on M the forms I0(X, Y) = 〈L−1X, Y), I−1,(X, Y) = 〈L−2X, Y), I−2(X, Y) = 〈 L−3X, Y) etc., where L−1 is the inverse of L. Since L is self-adjoint, the forms Im are, for any integer m, symmetric bilinear functions on TPM × TPM. Furthermore Im are C∞ in the sense that if X and Y are vector fields with domain A ⊂ M, then 〈 LmX, Y〉P = 〉LmXP, YP) is a C∞ real function on A. If the convex surface M is appropriately oriented, then the forms Im define metrics on M, which we also denote by 〈, 〉m (〈, 〉1)≡ 〈, 〉).
The study of the integral of the scalar curvature, ∫MRdVg, as a function on the set of all Riemannian metrics of the same total volume on a compact manifold is now classical, and the critical points are the Einstein metrics. On a compact contact manifold we consider this and ∫M (R − R* − 4n2) dv, with R* the *-scalar curvature, as functions on the set of metrics associated to the contact structure. For these integrals the critical point conditions then become certain commutativity conditions on the Ricci operator and the fundamental collineation of the contact metric structure. In particular, Sasakian metrics, when they exist, are maxima for the second function.
In this paper we consider how much we can say about an irreducible symmetric space M which admits a single hypersurface with at most two distinct principal curvatures. Then we prove that if N is conformally flat, then N is quasiumbilical and M must be a sphere, a real projective space or the noncompact dual of a sphere or a real projective space.
The problem is the reconstruction of the shape of an object, whose shell is a surface star-shaped with respect to a point 0, from the knowledge of the volume of every “half-object” obtained by taking any plane through 0. Conditions for the existence and uniqueness of the solution are given. The main result consists in showing that any uniform a-priori bound on the mean curvature of the shell reestablishes continuous dependence on the data for bodies satisfying a certain symmetry condition.
Defining a function on the set of all Riemannian metrics associated to a contact form on a compact manifold by taking the integral of the Ricci curvature in the direction of the characteristic vector field, it is shown that on a compact regular contact manifold the only critical points of this function are the metrics for which the characteristic vector field generates a group of isometrics.
In 1903 H. Minkowski obtained two integral formulae for closed convex surfaces in three dimensional Euclidean space. In this paper we obtain generalised Minkowski formulae on compact orientable immersed submanifolds of an arbitrary Riemannian manifold. By successive specialisation we indicate how known integral theorems can be obtained as particular cases of our result.
A sufficient condition, for a complete submanifold of a Riemannian manifold of positive constant curvature to be umbilical, is given. The condition will be given by an inequality which is established between the length of the second fundamental tensor and the mean curvature.