To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider here a certain class of groupoids obtained via an equivalence relation (the so-called subgroupoids of pair groupoids). We generalize to Haar systems in these groupoids some results related to entropy and pressure which are well known in thermodynamic formalism. We introduce a transfer operator, where the equivalence relation (which defines the groupoid) plays the role of the dynamics and the corresponding transverse function plays the role of the a priori probability. We also introduce the concept of invariant transverse probability and of entropy for an invariant transverse probability, as well as of pressure for transverse functions. Moreover, we explore the relation between quasi-invariant probabilities and transverse measures. Some of the general results presented here are not for continuous modular functions but for the more general class of measurable modular functions.
We study the thermodynamic formalism of a $C^{\infty }$ non-uniformly hyperbolic diffeomorphism on the 2-torus, known as the Katok map. We prove for a Hölder continuous potential with one additional condition, or geometric $t$-potential $\unicode[STIX]{x1D711}_{t}$ with $t<1$, the equilibrium state exists and is unique. We derive the level-2 large deviation principle for the equilibrium state of $\unicode[STIX]{x1D711}_{t}$. We study the multifractal spectra of the Katok map for the entropy and dimension of level sets of Lyapunov exponents.
We consider multimodal maps with holes and study the evolution of the open systems with respect to equilibrium states for both geometric and Hölder potentials. For small holes, we show that a large class of initial distributions share the same escape rate and converge to a unique absolutely continuous conditionally invariant measure; we also prove a variational principle connecting the escape rate to the pressure on the survivor set, with no conditions on the placement of the hole. Finally, introducing a weak condition on the centre of the hole, we prove scaling limits for the escape rate for holes centred at both periodic and non-periodic points, as the diameter of the hole goes to zero.
In L. W. Flinn’s PhD thesis published in 1972, the author conjectured that weakly expansive flows are also expansive flows. In this paper we use the horocycle flow on compact Riemann surfaces of constant negative curvature to show that Flinn’s conjecture is not true.
We consider a certain two-parameter family of automorphisms of the affine plane over a complete, locally compact non-Archimedean field. Each of these automorphisms admits a chaotic attractor on which it is topologically conjugate to a full two-sided shift map, and the attractor supports a unit Borel measure which describes the distribution of the forward orbit of Haar-almost all points in the basin of attraction. We also compute the Hausdorff dimension of the attractor, which is non-integral.
The Chirikov standard map is a prototypical example of a one-parameter family of volume-preserving maps for which one anticipates chaotic behavior on a non-negligible (positive-volume) subset of phase space for a large set of parameters. Rigorous analysis is notoriously difficult and it remains an open question whether this chaotic region, the stochastic sea, has positive Lebesgue measure for any parameter value. Here we study a problem of intermediate difficulty: compositions of standard maps with increasing coefficient. When the coefficients increase to infinity at a sufficiently fast polynomial rate, we obtain a strong law, a central limit theorem, and quantitative mixing estimates for Holder observables. The methods used are not specific to the standard map and apply to a class of compositions of ‘prototypical’ two-dimensional maps with hyperbolicity on ‘most’ of phase space.
For non-invertible dynamical systems, we investigate how ‘non-invertible’ a system is and how the ‘non-invertibility’ contributes to the entropy from different viewpoints. For a continuous map on a compact metric space, we propose a notion of pointwise metric preimage entropy for invariant measures. For systems with uniform separation of preimages, we establish a variational principle between this version of pointwise metric preimage entropy and pointwise topological entropies introduced by Hurley [On topological entropy of maps. Ergod. Th. & Dynam. Sys.15 (1995), 557–568], which answers a question considered by Cheng and Newhouse [Pre-image entropy. Ergod. Th. & Dynam. Sys.25 (2005), 1091–1113]. Under the same condition, the notion coincides with folding entropy introduced by Ruelle [Positivity of entropy production in nonequilibrium statistical mechanics. J. Stat. Phys.85(1–2) (1996), 1–23]. For a $C^{1}$-partially hyperbolic (non-invertible and non-degenerate) endomorphism on a closed manifold, we introduce notions of stable topological and metric entropies, and establish a variational principle relating them. For $C^{2}$ systems, the stable metric entropy is expressed in terms of folding entropy (namely, pointwise metric preimage entropy) and negative Lyapunov exponents. Preimage entropy could be regarded as a special type of stable entropy when each stable manifold consists of a single point. Moreover, we also consider the upper semi-continuity for both of pointwise metric preimage entropy and stable entropy and give a version of the Shannon–McMillan–Breiman theorem for them.
J.-C. Yoccoz proposed a natural extension of Selberg’s eigenvalue conjecture to moduli spaces of abelian differentials. We prove an approximation to this conjecture. This gives a qualitative generalization of Selberg’s $\frac{3}{16}$ theorem to moduli spaces of abelian differentials on surfaces of genus ${\geqslant}2$.
We show that various classes of products of manifolds do not support transitive Anosov diffeomorphisms. Exploiting the Ruelle–Sullivan cohomology class, we prove that the product of a negatively curved manifold with a rational homology sphere does not support transitive Anosov diffeomorphisms. We extend this result to products of finitely many negatively curved manifolds of dimension at least three with a rational homology sphere that has vanishing simplicial volume. As an application of this study, we obtain new examples of manifolds that do not support transitive Anosov diffeomorphisms, including certain manifolds with non-trivial higher homotopy groups and certain products of aspherical manifolds.
This paper establishes a fundamental difference between $\mathbb{Z}$ subshifts of finite type and $\mathbb{Z}^{2}$ subshifts of finite type in the context of ergodic optimization. Specifically, we consider a subshift of finite type $X$ as a subset of a full shift $F$. We then introduce a natural penalty function $f$, defined on $F$, which is 0 if the local configuration near the origin is legal and $-1$ otherwise. We show that in the case of $\mathbb{Z}$ subshifts, for all sufficiently small perturbations, $g$, of $f$, the $g$-maximizing invariant probability measures are supported on $X$ (that is, the set $X$ is stably maximized by $f$). However, in the two-dimensional case, we show that the well-known Robinson tiling fails to have this property: there exist arbitrarily small perturbations, $g$, of $f$ for which the $g$-maximizing invariant probability measures are supported on $F\setminus X$.
We consider partially hyperbolic attractors for non-singular endomorphisms admitting an invariant stable bundle and a positively invariant cone field with non-uniform cone expansion at a positive Lebesgue measure set of points. We prove volume lemmas for both Lebesgue measure on the topological basin of the attractor and the SRB measure supported on the attractor. As a consequence, under a mild assumption we prove exponential large-deviation bounds for the convergence of Birkhoff averages associated to continuous observables with respect to the SRB measure.
We consider closed orientable surfaces $S$ of genus $g>1$ and homeomorphisms $f:S\rightarrow S$ isotopic to the identity. A set of hypotheses is presented, called a fully essential system of curves $\mathscr{C}$ and it is shown that under these hypotheses, the natural lift of $f$ to the universal cover of $S$ (the Poincaré disk $\mathbb{D}$), denoted by $\widetilde{f},$ has complicated and rich dynamics. In this context, we generalize results that hold for homeomorphisms of the torus isotopic to the identity when their rotation sets contain zero in the interior. In particular, for $C^{1+\unicode[STIX]{x1D716}}$ diffeomorphisms, we show the existence of rotational horseshoes having non-trivial displacements in every homotopical direction. As a consequence, we found that the homological rotation set of such an $f$ is a compact convex subset of $\mathbb{R}^{2g}$ with maximal dimension and all points in its interior are realized by compact $f$-invariant sets and by periodic orbits in the rational case. Also, $f$ has uniformly bounded displacement with respect to rotation vectors in the boundary of the rotation set. This implies, in case where $f$ is area preserving, that the rotation vector of Lebesgue measure belongs to the interior of the rotation set.
We prove that a class of weakly partially hyperbolic endomorphisms on $\mathbb{T}^{2}$ are dynamically coherent and leaf conjugate to linear toral endomorphisms. Moreover, we give an example of a partially hyperbolic endomorphism on $\mathbb{T}^{2}$ which does not admit a centre foliation.
There is much research on the dynamical complexity on irregular sets and level sets of ergodic average from the perspective of density in base space, the Hausdorff dimension, Lebesgue positive measure, positive or full topological entropy (and topological pressure), etc. However, this is not the case from the viewpoint of chaos. There are many results on the relationship of positive topological entropy and various chaos. However, positive topological entropy does not imply a strong version of chaos, called DC1. Therefore, it is non-trivial to study DC1 on irregular sets and level sets. In this paper, we will show that, for dynamical systems with specification properties, there exist uncountable DC1-scrambled subsets in irregular sets and level sets. Meanwhile, we prove that several recurrent level sets of points with different recurrent frequency have uncountable DC1-scrambled subsets. The major argument in proving the above results is that there exists uncountable DC1-scrambled subsets in saturated sets.
We obtain a central limit theorem, local limit theorems and renewal theorems for stationary processes generated by skew product maps $T(\unicode[STIX]{x1D714},x)=(\unicode[STIX]{x1D703}\unicode[STIX]{x1D714},T_{\unicode[STIX]{x1D714}}x)$ together with a $T$-invariant measure whose base map $\unicode[STIX]{x1D703}$ satisfies certain topological and mixing conditions and the maps $T_{\unicode[STIX]{x1D714}}$ on the fibers are certain non-singular distance-expanding maps. Our results hold true when $\unicode[STIX]{x1D703}$ is either a sufficiently fast mixing Markov shift with positive transition densities or a (non-uniform) Young tower with at least one periodic point and polynomial tails. The proofs are based on the random complex Ruelle–Perron–Frobenius theorem from Hafouta and Kifer [Nonconventional Limit Theorems and Random Dynamics. World Scientific, Singapore, 2018] applied with appropriate random transfer operators generated by $T_{\unicode[STIX]{x1D714}}$, together with certain regularity assumptions (as functions of $\unicode[STIX]{x1D714}$) of these operators. Limit theorems for deterministic processes whose distributions on the fibers are generated by Markov chains with transition operators satisfying a random version of the Doeblin condition are also obtained. The main innovation in this paper is that the results hold true even though the spectral theory used in Aimino, Nicol and Vaienti [Annealed and quenched limit theorems for random expanding dynamical systems. Probab. Theory Related Fields162 (2015), 233–274] does not seem to be applicable, and the dual of the Koopman operator of $T$ (with respect to the invariant measure) does not seem to have a spectral gap.
We study C1-robustly transitive and nonhyperbolic diffeomorphisms having a partially hyperbolic splitting with one-dimensional central bundle whose strong un-/stable foliations are both minimal. In dimension 3, an important class of examples of such systems is given by those with a simple closed periodic curve tangent to the central bundle. We prove that there is a C1-open and dense subset of such diffeomorphisms such that every nonhyperbolic ergodic measure (i.e. with zero central exponent) can be approximated in the weak* topology and in entropy by measures supported in basic sets with positive (negative) central Lyapunov exponent. Our method also allows to show how entropy changes across measures with central Lyapunov exponent close to zero. We also prove that any nonhyperbolic ergodic measure is in the intersection of the convex hulls of the measures with positive central exponent and with negative central exponent.
We introduce and study skew product Smale endomorphisms over finitely irreducible shifts with countable alphabets. This case is different from the one with finite alphabets and we develop new methods. In the conformal context we prove that almost all conditional measures of equilibrium states of summable Hölder continuous potentials are exact dimensional and their dimension is equal to the ratio of (global) entropy and Lyapunov exponent. We show that the exact dimensionality of conditional measures on fibers implies global exact dimensionality of the original measure. We then study equilibrium states for skew products over expanding Markov–Rényi transformations and settle the question of exact dimensionality of such measures. We apply our results to skew products over the continued fraction transformation. This allows us to extend and improve the Doeblin–Lenstra conjecture on Diophantine approximation coefficients to a larger class of measures and irrational numbers.
We consider random walks on the mapping class group that have finite first moment with respect to the word metric, whose support generates a non-elementary subgroup and contains a pseudo-Anosov map whose invariant Teichmüller geodesic is in the principal stratum of quadratic differentials. We show that a Teichmüller geodesic typical with respect to the harmonic measure for such random walks, is recurrent to the thick part of the principal stratum. As a consequence, the vertical foliation of such a random Teichmüller geodesic has no saddle connections.
We study the $C^{1}$-topological properties of the subset of non-uniform hyperbolic diffeomorphisms in a certain class of $C^{2}$ partially hyperbolic symplectic systems which have bounded $C^{2}$ distance to the identity. In this set, we prove the stability of non-uniform hyperbolicity as a function of the diffeomorphism and the measure, and the existence of an open and dense subset of continuity points for the center Lyapunov exponents. These results are generalized to the volume-preserving context.