We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider partially hyperbolic attractors for non-singular endomorphisms admitting an invariant stable bundle and a positively invariant cone field with non-uniform cone expansion at a positive Lebesgue measure set of points. We prove volume lemmas for both Lebesgue measure on the topological basin of the attractor and the SRB measure supported on the attractor. As a consequence, under a mild assumption we prove exponential large-deviation bounds for the convergence of Birkhoff averages associated to continuous observables with respect to the SRB measure.
We consider closed orientable surfaces $S$ of genus $g>1$ and homeomorphisms $f:S\rightarrow S$ isotopic to the identity. A set of hypotheses is presented, called a fully essential system of curves $\mathscr{C}$ and it is shown that under these hypotheses, the natural lift of $f$ to the universal cover of $S$ (the Poincaré disk $\mathbb{D}$), denoted by $\widetilde{f},$ has complicated and rich dynamics. In this context, we generalize results that hold for homeomorphisms of the torus isotopic to the identity when their rotation sets contain zero in the interior. In particular, for $C^{1+\unicode[STIX]{x1D716}}$ diffeomorphisms, we show the existence of rotational horseshoes having non-trivial displacements in every homotopical direction. As a consequence, we found that the homological rotation set of such an $f$ is a compact convex subset of $\mathbb{R}^{2g}$ with maximal dimension and all points in its interior are realized by compact $f$-invariant sets and by periodic orbits in the rational case. Also, $f$ has uniformly bounded displacement with respect to rotation vectors in the boundary of the rotation set. This implies, in case where $f$ is area preserving, that the rotation vector of Lebesgue measure belongs to the interior of the rotation set.
We prove that a class of weakly partially hyperbolic endomorphisms on $\mathbb{T}^{2}$ are dynamically coherent and leaf conjugate to linear toral endomorphisms. Moreover, we give an example of a partially hyperbolic endomorphism on $\mathbb{T}^{2}$ which does not admit a centre foliation.
There is much research on the dynamical complexity on irregular sets and level sets of ergodic average from the perspective of density in base space, the Hausdorff dimension, Lebesgue positive measure, positive or full topological entropy (and topological pressure), etc. However, this is not the case from the viewpoint of chaos. There are many results on the relationship of positive topological entropy and various chaos. However, positive topological entropy does not imply a strong version of chaos, called DC1. Therefore, it is non-trivial to study DC1 on irregular sets and level sets. In this paper, we will show that, for dynamical systems with specification properties, there exist uncountable DC1-scrambled subsets in irregular sets and level sets. Meanwhile, we prove that several recurrent level sets of points with different recurrent frequency have uncountable DC1-scrambled subsets. The major argument in proving the above results is that there exists uncountable DC1-scrambled subsets in saturated sets.
We obtain a central limit theorem, local limit theorems and renewal theorems for stationary processes generated by skew product maps $T(\unicode[STIX]{x1D714},x)=(\unicode[STIX]{x1D703}\unicode[STIX]{x1D714},T_{\unicode[STIX]{x1D714}}x)$ together with a $T$-invariant measure whose base map $\unicode[STIX]{x1D703}$ satisfies certain topological and mixing conditions and the maps $T_{\unicode[STIX]{x1D714}}$ on the fibers are certain non-singular distance-expanding maps. Our results hold true when $\unicode[STIX]{x1D703}$ is either a sufficiently fast mixing Markov shift with positive transition densities or a (non-uniform) Young tower with at least one periodic point and polynomial tails. The proofs are based on the random complex Ruelle–Perron–Frobenius theorem from Hafouta and Kifer [Nonconventional Limit Theorems and Random Dynamics. World Scientific, Singapore, 2018] applied with appropriate random transfer operators generated by $T_{\unicode[STIX]{x1D714}}$, together with certain regularity assumptions (as functions of $\unicode[STIX]{x1D714}$) of these operators. Limit theorems for deterministic processes whose distributions on the fibers are generated by Markov chains with transition operators satisfying a random version of the Doeblin condition are also obtained. The main innovation in this paper is that the results hold true even though the spectral theory used in Aimino, Nicol and Vaienti [Annealed and quenched limit theorems for random expanding dynamical systems. Probab. Theory Related Fields162 (2015), 233–274] does not seem to be applicable, and the dual of the Koopman operator of $T$ (with respect to the invariant measure) does not seem to have a spectral gap.
We study C1-robustly transitive and nonhyperbolic diffeomorphisms having a partially hyperbolic splitting with one-dimensional central bundle whose strong un-/stable foliations are both minimal. In dimension 3, an important class of examples of such systems is given by those with a simple closed periodic curve tangent to the central bundle. We prove that there is a C1-open and dense subset of such diffeomorphisms such that every nonhyperbolic ergodic measure (i.e. with zero central exponent) can be approximated in the weak* topology and in entropy by measures supported in basic sets with positive (negative) central Lyapunov exponent. Our method also allows to show how entropy changes across measures with central Lyapunov exponent close to zero. We also prove that any nonhyperbolic ergodic measure is in the intersection of the convex hulls of the measures with positive central exponent and with negative central exponent.
We introduce and study skew product Smale endomorphisms over finitely irreducible shifts with countable alphabets. This case is different from the one with finite alphabets and we develop new methods. In the conformal context we prove that almost all conditional measures of equilibrium states of summable Hölder continuous potentials are exact dimensional and their dimension is equal to the ratio of (global) entropy and Lyapunov exponent. We show that the exact dimensionality of conditional measures on fibers implies global exact dimensionality of the original measure. We then study equilibrium states for skew products over expanding Markov–Rényi transformations and settle the question of exact dimensionality of such measures. We apply our results to skew products over the continued fraction transformation. This allows us to extend and improve the Doeblin–Lenstra conjecture on Diophantine approximation coefficients to a larger class of measures and irrational numbers.
We consider random walks on the mapping class group that have finite first moment with respect to the word metric, whose support generates a non-elementary subgroup and contains a pseudo-Anosov map whose invariant Teichmüller geodesic is in the principal stratum of quadratic differentials. We show that a Teichmüller geodesic typical with respect to the harmonic measure for such random walks, is recurrent to the thick part of the principal stratum. As a consequence, the vertical foliation of such a random Teichmüller geodesic has no saddle connections.
We study the $C^{1}$-topological properties of the subset of non-uniform hyperbolic diffeomorphisms in a certain class of $C^{2}$ partially hyperbolic symplectic systems which have bounded $C^{2}$ distance to the identity. In this set, we prove the stability of non-uniform hyperbolicity as a function of the diffeomorphism and the measure, and the existence of an open and dense subset of continuity points for the center Lyapunov exponents. These results are generalized to the volume-preserving context.
We consider skew products on $M\times \mathbb{T}^{2}$, where $M$ is the two-sphere or the two-torus, which are partially hyperbolic and semi-conjugate to an Axiom A diffeomorphism. This class of dynamics includes the open sets of $\unicode[STIX]{x1D6FA}$-non-stable systems introduced by Abraham and Smale [Non-genericity of Ł-stability. Global Analysis (Proceedings of Symposia in Pure Mathematics, XIV (Berkeley 1968)). American Mathematical Society, Providence, RI, 1970, pp. 5–8.] and Shub [Topological Transitive Diffeomorphisms in$T^{4}$(Lecture Notes in Mathematics, 206). Springer, Berlin, 1971, pp. 39–40]. We present sufficient conditions, both on the skew products and the potentials, for the existence and uniqueness of equilibrium states, and discuss their statistical stability.
We prove that generic fiber-bunched and Hölder continuous linear cocycles over a non-uniformly hyperbolic system endowed with a $u$-Gibbs measure have simple Lyapunov spectrum. This gives an affirmative answer to a conjecture proposed by Viana in the context of fiber-bunched linear cocycles.
Group actions on a Smale space and the actions induced on the $\text{C}^{\ast }$-algebras associated to such a dynamical system are studied. We show that an effective action of a discrete group on a mixing Smale space produces a strongly outer action on the homoclinic algebra. We then show that for irreducible Smale spaces, the property of finite Rokhlin dimension passes from the induced action on the homoclinic algebra to the induced actions on the stable and unstable $\text{C}^{\ast }$-algebras. In each of these cases, we discuss the preservation of properties (such as finite nuclear dimension, ${\mathcal{Z}}$-stability, and classification by Elliott invariants) in the resulting crossed products.
Wieler has shown that every irreducible Smale space with totally disconnected stable sets is a solenoid (i.e., obtained via a stationary inverse limit construction). Using her construction, we show that the associated stable $C^{\ast }$-algebra is the stationary inductive limit of a $C^{\ast }$-stable Fell algebra that has a compact spectrum and trivial Dixmier–Douady invariant. This result applies in particular to Williams solenoids along with other examples. Beyond the structural implications of this inductive limit, one can use this result to, in principle, compute the $K$-theory of the stable $C^{\ast }$-algebra. A specific one-dimensional Smale space (the $aab/ab$-solenoid) is considered as an illustrative running example throughout.
For a non-generic, yet dense subset of $C^{1}$ expanding Markov maps of the interval we prove the existence of uncountably many Lyapunov optimizing measures which are ergodic, fully supported and have positive entropy. These measures are equilibrium states for some Hölder continuous potentials. We also prove the existence of another non-generic dense subset for which the optimizing measure is unique and supported on a periodic orbit. A key ingredient is a new $C^{1}$ perturbation theorem which allows us to interpolate between expanding Markov maps and the shift map on a finite number of symbols.
Let $f:M\rightarrow M$ be a dynamically coherent partially hyperbolic diffeomorphism whose center foliation has all its leaves compact. We prove that if the unstable bundle of $f$ is one-dimensional, then the volume of center leaves must be bounded in $M$.
In this we exploit the arithmeticity criterion of Oh and Benoist–Miquel to exhibit an origami in the principal stratum of the moduli space of translation surfaces of genus three whose Kontsevich–Zorich monodromy is not thin in the sense of Sarnak.
Consider a $C^{1}$-partially hyperbolic diffeomorphism $f:M\rightarrow M$. Following the ideas in establishing the local variational principle for topological dynamical systems, we introduce the notions of local unstable metric entropies (and local unstable topological entropy) relative to a Borel cover ${\mathcal{U}}$ of $M$. It is shown that they coincide with the unstable metric entropy (and unstable topological entropy, respectively), when ${\mathcal{U}}$ is an open cover with small diameter. We also define the unstable tail entropy in the sense of Bowen and the unstable topological conditional entropy in the sense of Misiurewicz, and demonstrate that both of them vanish. Some generalizations of these results to the case of unstable pressure are also investigated.
For differentiable dynamical systems with dominated splittings, we give upper estimates on the measure-theoretic tail entropy in terms of Lyapunov exponents. As our primary application, we verify the upper semi-continuity of metric entropy in various settings with domination.
We prove the connectedness of the Prym eigenforms loci in genus four (for real multiplication by some order of discriminant $D$), for any $D$. These loci were discovered by McMullen in 2006.
We study Lagrange spectra at cusps of finite area Riemann surfaces. These spectra are penetration spectra that describe the asymptotic depths of penetration of geodesics in the cusps. Their study is in particular motivated by Diophantine approximation on Fuchsian groups. In the classical case of the modular surface and classical Diophantine approximation, Hall proved in 1947 that the classical Lagrange spectrum contains a half-line, known as a Hall ray. We generalize this result to the context of Riemann surfaces with cusps and Diophantine approximation on Fuchsian groups. One can measure excursion into a cusp both with respect to a natural height function or, more generally, with respect to any proper function. We prove the existence of a Hall ray for the Lagrange spectrum of any non-cocompact, finite covolume Fuchsian group with respect to any given cusp, both when the penetration is measured by a height function induced by the imaginary part as well as by any proper function close to it with respect to the Lipschitz norm. This shows that Hall rays are stable under (Lipschitz) perturbations. As a main tool, we use the boundary expansion developed by Bowen and Series to code geodesics and produce a geometric continued fraction-like expansion and some of the ideas in Hall’s original argument. A key element in the proof of the results for proper functions is a generalization of Hall’s theorem on the sum of Cantor sets, where we consider functions which are small perturbations in the Lipschitz norm of the sum.