We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Kontsevich ([Kir95, Problem 3.48]) conjectured that $\mathrm {BDiff}(M, \text {rel }\partial )$ has the homotopy type of a finite CW complex for all compact $3$-manifolds with nonempty boundary. Hatcher-McCullough ([HM97]) proved this conjecture when M is irreducible. We prove a homological version of Kontsevich’s conjecture. More precisely, we show that $\mathrm {BDiff}(M, \text {rel }\partial )$ has finitely many nonzero homology groups each finitely generated when M is a connected sum of irreducible $3$-manifolds that each have a nontrivial and non-spherical boundary.
Scalar relative invariants play an important role in the theory of group actions on a manifold as their zero sets are invariant hypersurfaces. Relative invariants are central in many applications, where they often are treated locally since an invariant hypersurface may not be a locus of a single function. Our aim is to establish a global theory of relative invariants.
For a Lie algebra ${\mathfrak g}$ of holomorphic vector fields on a complex manifold M, any holomorphic ${\mathfrak g}$-invariant hypersurface is given in terms of a ${\mathfrak g}$-invariant divisor. This generalizes the classical notion of scalar relative ${\mathfrak g}$-invariant. Any ${\mathfrak g}$-invariant divisor gives rise to a ${\mathfrak g}$-equivariant line bundle, and a large part of this paper is therefore devoted to the investigation of the group $\mathrm {Pic}_{\mathfrak g}(M)$ of ${\mathfrak g}$-equivariant line bundles. We give a cohomological description of $\mathrm {Pic}_{\mathfrak g}(M)$ in terms of a double complex interpolating the Chevalley-Eilenberg complex for ${\mathfrak g}$ with the Čech complex of the sheaf of holomorphic functions on M.
We also obtain results about polynomial divisors on affine bundles and jet bundles. This has applications to the theory of differential invariants. Those were actively studied in relation to invariant differential equations, but the description of multipliers (or weights) of relative differential invariants was an open problem. We derive a characterization of them with our general theory. Examples, including projective geometry of curves and second-order ODEs, not only illustrate the developed machinery but also give another approach and rigorously justify some classical computations. At the end, we briefly discuss generalizations of this theory.
We study homotopy groups of spaces of long links in Euclidean space of codimension at least three. With multiple components, they admit split injections from homotopy groups of spheres. We show that, up to knotting, these account for all the homotopy groups in a range which depends on the dimensions of the source manifolds and target manifold and which roughly generalizes the triple-point-free range for isotopy classes. Just beyond this range, joining components sends both a parametrized long Borromean rings class and a Hopf fibration to a generator of the first nontrivial homotopy group of the space of long knots. For spaces of equidimensional long links of most source dimensions, we describe generators for the homotopy group in this degree in terms of these Borromean rings and homotopy groups of spheres. A key ingredient in most of our results is a graphing map which increases source and target dimensions by one.
We study the $\mathscr {D}\mathrm {isc}$-structure space $S^{\mathscr {D}\mathrm {isc}}_\partial (M)$ of a compact smooth manifold M. Informally speaking, this space measures the difference between M, together with its diffeomorphisms, and the diagram of ordered framed configuration spaces of M with point-forgetting and point-splitting maps between them, together with its derived automorphisms. As the main results, we show that in high dimensions, the $\mathscr {D}\mathrm {isc}$-structure space a) only depends on the tangential $2$-type of M, b) is an infinite loop space, and c) is nontrivial as long as M is spin. The proofs involve intermediate results that may be of independent interest, including an enhancement of embedding calculus to the level of bordism categories, results on the behaviour of derived mapping spaces between operads under rationalisation, and an answer to a question of Dwyer and Hess in that we show that the map $\mathrm {BTop}(d)\rightarrow \mathrm {BAut}(E_d)$ is an equivalence if and only if d is at most $2$.
The Haefliger–Thurston conjecture predicts that Haefliger's classifying space for $C^r$-foliations of codimension $n$ whose normal bundles are trivial is $2n$-connected. In this paper, we confirm this conjecture for piecewise linear (PL) foliations of codimension $2$. Using this, we use a version of the Mather–Thurston theorem for PL homeomorphisms due to the author to derive new homological properties for PL surface homeomorphisms. In particular, we answer the question of Epstein in dimension $2$ and prove the simplicity of the identity component of PL surface homeomorphisms.
Let $M$ be an oriented smooth manifold and $\operatorname{Homeo}\!(M,\omega )$ the group of measure preserving homeomorphisms of $M$, where $\omega$ is a finite measure induced by a volume form. In this paper, we define volume and Euler classes in bounded cohomology of an infinite dimensional transformation group $\operatorname{Homeo}_0\!(M,\omega )$ and $\operatorname{Homeo}_+\!(M,\omega )$, respectively, and in several cases prove their non-triviality. More precisely, we define:
• Volume classes in $\operatorname{H}_b^n(\operatorname{Homeo}_0\!(M,\omega ))$, where $M$ is a hyperbolic manifold of dimension $n$.
• Euler classes in $\operatorname{H}_b^2(\operatorname{Homeo}_+(S,\omega ))$, where $S$ is an oriented closed hyperbolic surface.
We show that Euler classes have positive norms for any closed hyperbolic surface and volume classes have positive norms for all hyperbolic surfaces and certain hyperbolic $3$-manifolds; hence, they are non-trivial.
A weighted nonlinear flag is a nested set of closed submanifolds, each submanifold endowed with a volume density. We study the geometry of Fréchet manifolds of weighted nonlinear flags, in this way generalizing the weighted nonlinear Grassmannians. When the ambient manifold is symplectic, we use these nonlinear flags to describe a class of coadjoint orbits of the group of Hamiltonian diffeomorphisms, orbits that consist of weighted isotropic nonlinear flags.
In this paper we study the $\mathbb {C}^*$-fixed points in moduli spaces of Higgs bundles over a compact Riemann surface for a complex semisimple Lie group and its real forms. These fixed points are called Hodge bundles and correspond to complex variations of Hodge structure. We introduce a topological invariant for Hodge bundles that generalizes the Toledo invariant appearing for Hermitian Lie groups. An important result of this paper is a bound on this invariant which generalizes the Milnor–Wood inequality for a Hodge bundle in the Hermitian case, and is analogous to the Arakelov inequalities of classical variations of Hodge structure. When the generalized Toledo invariant is maximal, we establish rigidity results for the associated variations of Hodge structure which generalize known rigidity results for maximal Higgs bundles and their associated maximal representations in the Hermitian case.
In this paper, we generalize the original idea of Thurston for the so-called Mather-Thurston’s theorem for foliated bundles to prove new variants of this theorem for PL homeomorphisms and contactormorphisms. These versions answer questions posed by Gelfand-Fuks ([GF73, Section 5]) and Greenberg ([Gre92]) on PL foliations and Rybicki ([Ryb10, Section 11]) on contactomorphisms. The interesting point about the original Thurston’s technique compared to the better-known Segal-McDuff’s proof of the Mather-Thurston theorem is that it gives a compactly supported c-principle theorem without knowing the relevant local statement on open balls. In the appendix, we show that Thurston’s fragmentation implies the non-abelian Poincare duality theorem and its generalization using blob complexes ([MW12, Theorem 7.3.1]).
The method of equivariant moving frames is employed to construct and completely classify the differential invariants for the action of the projective group on functions defined on the two-dimensional projective plane. While there are four independent differential invariants of order $\leq 3$, it is proved that the algebra of differential invariants is generated by just two of them through invariant differentiation. The projective differential invariants are, in particular, of importance in image processing applications.
In this paper, we mainly introduce some new notions of generalized Bloch type periodic functions namely pseudo Bloch type periodic functions and weighted pseudo Bloch type periodic functions. A Bloch type periodic function may not be Bloch type periodic under certain small perturbations while it can be quasi Bloch type periodic in sense of generalized Bloch type periodic functions. We firstly show the completeness of spaces of generalized Bloch type periodic functions and establish some further properties such as composition and convolution theorems of such functions. We then apply these results to investigate existence results for generalized Bloch type periodic mild solutions to some semi-linear differential equations in Banach spaces. The obtained results show that for each generalized Bloch type periodic input forcing disturbance, the output mild solutions to reference evolution equations remain generalized Bloch type periodic.
We prove completeness for the main examples of infinite-dimensional Lie groups and some related topological groups. Consider a sequence $G_{1}\subseteq G_{2}\subseteq \cdots \,$ of topological groups $G_{n}$ n such that $G_{n}$ is a subgroup of $G_{n+1}$ and the latter induces the given topology on $G_{n}$, for each $n\in \mathbb{N}$. Let $G$ be the direct limit of the sequence in the category of topological groups. We show that $G$ induces the given topology on each $G_{n}$ whenever $\cup _{n\in \mathbb{N}}V_{1}V_{2}\cdots V_{n}$ is an identity neighbourhood in $G$ for all identity neighbourhoods $V_{n}\subseteq G_{n}$. If, moreover, each $G_{n}$ is complete, then $G$ is complete. We also show that the weak direct product $\oplus _{j\in J}G_{j}$ is complete for each family $(G_{j})_{j\in J}$ of complete Lie groups $G_{j}$. As a consequence, every strict direct limit $G=\cup _{n\in \mathbb{N}}G_{n}$ of finite-dimensional Lie groups is complete, as well as the diffeomorphism group $\text{Diff}_{c}(M)$ of a paracompact finite-dimensional smooth manifold $M$ and the test function group $C_{c}^{k}(M,H)$, for each $k\in \mathbb{N}_{0}\cup \{\infty \}$ and complete Lie group $H$ modelled on a complete locally convex space.
Set differential equations are usually formulated in terms of the Hukuhara differential. As a consequence, the theory of set differential equations is perceived as an independent subject, in which all results are proved within the framework of the Hukuhara calculus. We propose to reformulate set differential equations as ordinary differential equations in a Banach space by identifying the convex and compact subsets of ℝd with their support functions. Using this representation, standard existence and uniqueness theorems for ordinary differential equations can be applied to set differential equations. We provide a geometric interpretation of the main result, and demonstrate that our approach overcomes the heavy restrictions that the use of the Hukuhara differential implies for the nature of a solution.
We study the renormalized volume of asymptotically hyperbolic Einstein (AHE in short) manifolds $(M,g)$ when the conformal boundary $\unicode[STIX]{x2202}M$ has dimension $n$ even. Its definition depends on the choice of metric $h_{0}$ on $\unicode[STIX]{x2202}M$ in the conformal class at infinity determined by $g$, we denote it by $\text{Vol}_{R}(M,g;h_{0})$. We show that $\text{Vol}_{R}(M,g;\cdot )$ is a functional admitting a ‘Polyakov type’ formula in the conformal class $[h_{0}]$ and we describe the critical points as solutions of some non-linear equation $v_{n}(h_{0})=\text{constant}$, satisfied in particular by Einstein metrics. When $n=2$, choosing extremizers in the conformal class amounts to uniformizing the surface, while if $n=4$ this amounts to solving the $\unicode[STIX]{x1D70E}_{2}$-Yamabe problem. Next, we consider the variation of $\text{Vol}_{R}(M,\cdot ;\cdot )$ along a curve of AHE metrics $g^{t}$ with boundary metric $h_{0}^{t}$ and we use this to show that, provided conformal classes can be (locally) parametrized by metrics $h$ solving $v_{n}(h)=\text{constant}$ and $\text{Vol}(\unicode[STIX]{x2202}M,h)=1$, the set of ends of AHE manifolds (up to diffeomorphisms isotopic to the identity) can be viewed as a Lagrangian submanifold in the cotangent space to the space ${\mathcal{T}}(\unicode[STIX]{x2202}M)$ of conformal structures on $\unicode[STIX]{x2202}M$. We obtain, as a consequence, a higher-dimensional version of McMullen’s quasi-Fuchsian reciprocity. We finally show that conformal classes admitting negatively curved Einstein metrics are local minima for the renormalized volume for a warped product type filling.
In this paper, we define and study strong right-invariant sub-Riemannian structures on the group of diffeomorphisms of a manifold with bounded geometry. We derive the Hamiltonian geodesic equations for such structures, and we provide examples of normal and of abnormal geodesics in that infinite-dimensional context. The momentum formulation gives a sub-Riemannian version of the Euler–Arnol’d equation. Finally, we establish some approximate and exact reachability properties for diffeomorphisms, and we give some consequences for Moser theorems.
We study properties of Sobolev-type metrics on the space of immersed plane curves. We show that the geodesic equation for Sobolev-type metrics with constant coefficients of order 2 and higher is globally well-posed for smooth initial data as well as for initial data in certain Sobolev spaces. Thus the space of closed plane curves equipped with such a metric is geodesically complete. We find lower bounds for the geodesic distance in terms of curvature and its derivatives.
We prove an implicit function theorem for functions on infinite-dimensional Banach manifolds, invariant under the (local) action of a finite-dimensional Lie group. Motivated by some geometric variational problems, we consider group actions that are not necessarily differentiable everywhere, but only on some dense subset. Applications are discussed in the context of harmonic maps, closed (pseudo-) Riemannian geodesics and constant mean curvature hypersurfaces.
We detail a construction of totally symmetric surfaces of constant mean curvature 0≤H<1 in hyperbolic 3-space of sectional curvature −1 via the generalized Weierstrass type representation.
In this paper we describe the moduli spaces of degree d branched superminimal immersions of a compact Riemann surface of genus g into S4. We prove that when d ≥ max {2g, g + 2}, such spaces have the structure of projectivzed fibre products and are path-connected quasi projective varieties of dimension 2d − g + 4. This generalizes known results for spaces of harmonic 2-spheres in S4.