To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
While the classification project for the simple groups of finite Morley rank is unlikely toproduce a classification of the simple groups of finite Morley rank, the enterprise has already arrived at a considerably closer approximation to that ideal goal than could have been realistically anticipated, with a mix of results of several flavors, some classificatory and others more structural, which can be combined when the stars are suitably aligned to produce results at a level of generality which, in parallel areas of group theory, would normally require either some additional geometric structure, or an explicit classification. And Bruno Poizat is generally awesome, though sometimes he goes too far.
In this note we first prove that, for a positive integer n>1 with n≠p or p2 where p is a prime, there exists a transitive group of degree n without regular subgroups. Then we look at 2-closed transitive groups without regular subgroups, and pose two questions and a problem for further study.
Let k be an algebraically closed field of positive characteristic p. We consider which finite groups G have the property that every faithful action of G on a connected smooth projective curve over k lifts to characteristic zero. Oort conjectured that cyclic groups have this property. We show that if a cyclic-by-p group G has this property, then G must be either cyclic or dihedral, with the exception of A4 in characteristic two. This proves one direction of a strong form of the Oort conjecture.
A simpleundirected graph is said to be semisymmetric if it is regular and edge-transitive but not vertex-transitive. Let p be a prime. It was shown by Folkman [J. Folkman, ‘Regular line-symmetric graphs’, J. Combin. Theory3 (1967), 215–232] that a regular edge-transitive graph of order 2p or 2p2 is necessarily vertex-transitive. In this paper an extension of his result in the case of cubic graphs is given. It is proved that every cubic edge-transitive graph of order 8p2 is vertex-transitive.
Projective planes of order n with a coUineation group admitting a 2-transitive orbit on a line of length at least n/2 are investigated and new examples are provided.
An automorphism group of a graph is said to be s-regular if it acts regularly on the set of s-arcs in the graph. A graph is s-regular if its full automorphism group is s-regular. For a connected cubic symmetric graph X of order 2pn for an odd prime p, we show that if p ≠ 5, 7 then every Sylow p-subgroup of the full automorphism group Aut(X) of X is normal, and if p ≠3 then every s-regular subgroup of Aut(X) having a normal Sylow p-subgroup contains an (s − 1)-regular subgroup for each 1 ≦ s ≦ 5. As an application, we show that every connected cubic symmetric graph of order 2pn is a Cayley graph if p > 5 and we classify the s-regular cubic graphs of order 2p2 for each 1≦ s≦ 5 and each prime p. as a continuation of the authors' classification of 1-regular cubic graphs of order 2p2. The same classification of those of order 2p is also done.
Various lattices of subgroups of a finite transitive permutation group G can be used to define a set of ‘basic’ permutation groups associated with G that are analogues of composition factors for abstract finite groups. In particular G can be embedded in an iterated wreath product of a chain of its associated basic permutation groups. The basic permutation groups corresponding to the lattice L of all subgroups of G containing a given point stabiliser are a set of primitive permutation groups. We introduce two new subgroup lattices contained in L, called the seminormal subgroup lattice and the subnormal subgroup lattice. For these lattices the basic permutation groups are quasiprimitive and innately transitive groups, respectively.
Finite innately transitive permutation groups include all finite quasiprimitive and primitive permutation groups. In this paper, results in the theory of quasiprimitive and primitive groups are generalised to innately transitive groups, and in particular, we extend results of Praeger and Shalev. Thus we show that innately transitive groups possess parameter bounds which are similar to those for primitive groups. We also classify the innately transitive types of quotient actions of innately transitive groups.
A transitive simple subgroup of a finite symmetric group is very rarely contained in a full wreath product in product action. All such simple permutation groups are determined in this paper. This remarkable conclusion is reached after a definition and detailed examination of ‘Cartesian decompositions’ of the permuted set, relating them to certain ‘Cartesian systems of subgroups’. These concepts, and the bijective connections between them, are explored in greater generality, with specific future applications in mind.
A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this paper we show that there exists a one-regular cubic graph of order 2p or 2p2 where p is a prime if and only if 3 is a divisor of p – 1 and the graph has order greater than 25. All of those one-regular cubic graphs are Cayley graphs on dihedral groups and there is only one such graph for each fixed order. Surprisingly, it can be shown that there is no one-regular cubic graph of order 4p or 4p2.
Certain permutation representations of free groups are constructed by finite approximation. The first is a construction of a cofinitary group with special properties, answering a question of Tim Wall published by Cameron. The second yields, via a method of Kepert and Willis, a totally disconnected locally compact group which is compactly generated and uniscalar but has no compact open normal subgroup. Finally, an oligomorphic group of automorphisms of the random graph is built, all of whose non-trivial subgroups have just finitely many orbits.
Finite graphs of valency 4 and girth 4 admitting ½-transitive group actions, that is, vertex- and edge- but not arc-transitive group actions, are investigated. A graph is said to be ½-transitive if its automorphism group acts ½-transitively. There is a natural orientation of the edge set of a ½-transitive graph induced and preserved by its automorphism group. It is proved that in a finite ½-transitive graph of valency 4 and girth 4 the set of 4-cycles decomposes the edge set in such a way that either every 4-cycle is alternating or every 4-cycle is directed relative to this orientation. In the latter case vertex stabilizers are isomorphic to Z2.
A permutation group is said to be quasiprimitive if every nontrivial normal subgroup is transitive. Every primitive permutation group is quasiprimitive, but the converse is not true. In this paper we start a project whose goal is to check which of the classical results on finite primitive permutation groups also holds for quasiprimitive ones (possibly with some modifications). The main topics addressed here are bounds on order, minimum degree and base size, as well as groups containing special p-elements. We also pose some problems for further research.
This paper inverstigates the automorphism groups of Cayley graphs of metracyclic p-gorups. A characterization is given of the automorphism groups of Cayley grahs of a metacyclic p-group for odd prime p. In particular, a complete determiniation of the automophism group of a connected Cayley graph with valency less than 2p of a nonabelian metacyclic p-group is obtained as a consequence. In subsequent work, the result of this paper has been applied to solve several problems in graph theory.
We consider finite groups with the property that any proper factor can be generated by a smaller number of elements than the group itself. We study some problems related with the probability of generating these groups with a given number of elements.
A number of constructions are given for arc-transitive digraphs, based on modifications of permutation representations of finite groups. In particular, it is shown that for every positive integer s and for any transitive permutation group p of degree k, there are infinitely many examples of a finite k-regular digraph with a group of automorphisms acting transitively on s-arcs (but not on (s + 1)-arcs), such that the stabilizer of a vertex induces the action of P on the out-neighbour set.
Group actions on ℝ-trees may be split into different types, and in Section 1 of this paper five distinct types are defined, with one type splitting into two sub-types. For a group G acting as a group of isometries on an ℝ-tree, conditions are considered under which a subgroup or a factor group may inherit the same type of action as G. In Section 2 subgroups of finite index are considered, and in Section 3 normal subgroups and also factor groups are considered. The results obtained here, Theorems 2.1 and 3.4, allow restrictions on possible types of actions for hypercentral, hypercyclic and hyperabelian groups to be given in Theorem 3.6. In Section 4 finitely generated subgroups are considered, and this gives rise to restrictions on possible actions for groups with certain local properties. The results throughout are stated in terms of group actions on trees. Using Chiswell's construction in [3], they could equally be stated in terms of restrictions on possible types of Lyndon length functions.
In [7] S. Pride gave a family of examples of finitely presented groups of cohomological dimension 2 having no non-trivial action on a simplicial tree. We show here that his examples have no non-trivial action on a Λ-tree, for any ordered abelian group Λ. This provides further slight evidence for an affirmative answer to Question A in §3.1 of [8]. We also give another similar family of examples.
A balanced directed cycle design with parameters (υ, k, 1), sometimes called a (υ, k, 1)-design, is a decomposition of the complete directed graph into edge disjoint directed cycles of length k. A complete classification is given of (υ, k, 1)-designs admitting the holomorph {øa, b: x ↦ ax + b∣ a, b ∈ Zυ, (a, υ1) = 1} of the cyclic group Zυ as a group of automorphisms. In particular it is shown that such a design exists if and ony if one of (a) k = 2, (b) p ≡ 1 (mod k) for each prime p dividing υ, or (c) k is the least prime dividing υ, k2 does not divide υ, and p ≡ 1 (mod k) for each prime p < k dividing υ.