We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Inspired by work of Szymik and Wahl on the homology of Higman–Thompson groups, we establish a general connection between ample groupoids, topological full groups, algebraic K-theory spectra and infinite loop spaces, based on the construction of small permutative categories of compact open bisections. This allows us to analyse homological invariants of topological full groups in terms of homology for ample groupoids.
Applications include complete rational computations, general vanishing and acyclicity results for group homology of topological full groups as well as a proof of Matui’s AH-conjecture for all minimal, ample groupoids with comparison.
For finite nilpotent groups $J$ and $N$, suppose $J$ acts on $N$ via automorphisms. We exhibit a decomposition of the first cohomology set in terms of the first cohomologies of the Sylow $p$-subgroups of $J$ that mirrors the primary decomposition of $H^1(J,N)$ for abelian $N$. We then show that if $N \rtimes J$ acts on some non-empty set $\Omega$, where the action of $N$ is transitive and for each prime $p$ a Sylow $p$-subgroup of $J$ fixes an element of $\Omega$, then $J$ fixes an element of $\Omega$.
Given a group $G$ and an integer $n\geq 0$, we consider the family ${\mathcal F}_n$ of all virtually abelian subgroups of $G$ of $\textrm{rank}$ at most $n$. In this article, we prove that for each $n\ge 2$ the Bredon cohomology, with respect to the family ${\mathcal F}_n$, of a free abelian group with $\textrm{rank}$$k \gt n$ is nontrivial in dimension $k+n$; this answers a question of Corob Cook et al. (Homology Homotopy Appl. 19(2) (2017), 83–87, Question 2.7). As an application, we compute the minimal dimension of a classifying space for the family ${\mathcal F}_n$ for braid groups, right-angled Artin groups, and graphs of groups whose vertex groups are infinite finitely generated virtually abelian groups, for all $n\ge 2$. The main tools that we use are the Mayer–Vietoris sequence for Bredon cohomology, Bass–Serre theory, and the Lück–Weiermann construction.
We prove some conditions for higher-dimensional algebraic fibering of pro-p group extensions, and we establish corollaries about incoherence of pro-p groups. In particular, if $1 \to K \to G \to \Gamma \to 1$ is a short exact sequence of pro-p groups, such that $\Gamma $ contains a finitely generated, non-abelian, free pro-p subgroup, K a finitely presented pro-p group with N a normal pro-p subgroup of K such that $K/ N \simeq \mathbb {Z}_p$ and N not finitely generated as a pro-p group, then G is incoherent (in the category of pro-p groups). Furthermore, we show that if K is a finitely generated, free pro-p group with $d(K) \geq 2$, then either $\mathrm{Aut}_0(K)$ is incoherent (in the category of pro-p groups) or there is a finitely presented pro-p group, without non-procyclic free pro-p subgroups, that has a metabelian pro-p quotient that is not finitely presented, i.e., a pro-p version of a result of Bieri–Strebel does not hold.
We show that a certain category of bimodules over a finite-dimensional quiver algebra known as a type B zigzag algebra is a quotient category of the category of type B Soergel bimodules. This leads to an alternate proof of Rouquier’s conjecture on the faithfulness of the 2-braid groups for type B.
We generalise some known results for limit groups over free groups and residually free groups to limit groups over Droms RAAGs and residually Droms RAAGs, respectively. We show that limit groups over Droms RAAGs are free-by-(torsion-free nilpotent). We prove that if S is a full subdirect product of type $FP_s(\mathbb{Q})$ of limit groups over Droms RAAGs with trivial center, then the projection of S to the direct product of any s of the limit groups over Droms RAAGs has finite index. Moreover, we compute the growth of homology groups and the volume gradients for limit groups over Droms RAAGs in any dimension and for finitely presented residually Droms RAAGs of type $FP_m$ in dimensions up to m. In particular, this gives the values of the analytic $L^2$-Betti numbers of these groups in the respective dimensions.
In the setting of finite groups, suppose $J$ acts on $N$ via automorphisms so that the induced semidirect product $N\rtimes J$ acts on some non-empty set $\Omega$, with $N$ acting transitively. Glauberman proved that if the orders of $J$ and $N$ are coprime, then $J$ fixes a point in $\Omega$. We consider the non-coprime case and show that if $N$ is abelian and a Sylow $p$-subgroup of $J$ fixes a point in $\Omega$ for each prime $p$, then $J$ fixes a point in $\Omega$. We also show that if $N$ is nilpotent, $N\rtimes J$ is supersoluble, and a Sylow $p$-subgroup of $J$ fixes a point in $\Omega$ for each prime $p$, then $J$ fixes a point in $\Omega$.
A theorem of Brady and Meier states that a right-angled Artin group is a duality group if and only if the flag complex of the defining graph is Cohen–Macaulay. We use this to give an example of a RAAG with the property that its outer automorphism group is not a virtual duality group. This gives a partial answer to a question of Vogtmann. In an appendix, Brück describes how he used a computer-assisted search to find further examples.
We consider a Deligne–Mumford stack $X$ which is the quotient of an affine scheme $\operatorname {Spec}A$ by the action of a finite group $G$ and show that the Balmer spectrum of the tensor triangulated category of perfect complexes on $X$ is homeomorphic to the space of homogeneous prime ideals in the group cohomology ring $H^*(G,A)$.
We consider the Euler characteristics
$\chi (M)$
of closed, orientable, topological
$2n$
-manifolds with
$(n-1)$
-connected universal cover and a given fundamental group G of type
$F_n$
. We define
$q_{2n}(G)$
, a generalised version of the Hausmann-Weinberger invariant [19] for 4–manifolds, as the minimal value of
$(-1)^n\chi (M)$
. For all
$n\geq 2$
, we establish a strengthened and extended version of their estimates, in terms of explicit cohomological invariants of G. As an application, we obtain new restrictions for nonabelian finite groups arising as fundamental groups of rational homology 4–spheres.
Given a profinite group G of finite p-cohomological dimension and a pro-p quotient H of G by a closed normal subgroup N, we study the filtration on the Iwasawa cohomology of N by powers of the augmentation ideal in the group algebra of H. We show that the graded pieces are related to the cohomology of G via analogues of Bockstein maps for the powers of the augmentation ideal. For certain groups H, we relate the values of these generalized Bockstein maps to Massey products relative to a restricted class of defining systems depending on H. We apply our study to prove lower bounds on the p-ranks of class groups of certain nonabelian extensions of
$\mathbb {Q}$
and to give a new proof of the vanishing of Massey triple products in Galois cohomology.
The Hanna Neumann conjecture is a statement about the rank of the intersection of two finitely generated subgroups of a free group. The conjecture was posed by Hanna Neumann in 1957. In 2011, a strengthened version of the conjecture was proved independently by Joel Friedman and by Igor Mineyev. In this paper we show that the strengthened Hanna Neumann conjecture holds not only in free groups but also in non-solvable surface groups. In addition, we show that a retract in a free group and in a surface group is inert. This implies the Dicks–Ventura inertia conjecture for free and surface groups.
We show that the bicategory of finite groupoids and right-free permutation bimodules is a quotient of the bicategory of Mackey 2-motives introduced in [2], obtained by modding out the so-called cohomological relations. This categorifies Yoshida’s theorem for ordinary cohomological Mackey functors and provides a direct connection between Mackey 2-motives and the usual blocks of representation theory.
We show via
$\ell^2$
-homology that the rational homological dimension of a lattice in a product of simple simply connected Chevalley groups over global function fields is equal to the rational cohomological dimension and to the dimension of the associated Bruhat–Tits building.
We generalize results of Thomas, Allcock, Thom–Petersen, and Kar–Niblo to the first $\ell ^{2}$-Betti number of quotients of certain groups acting on trees by subgroups with free actions on the edge sets of the graphs.
Let $G$ be a finite group with cyclic Sylow $p$-subgroups, and let $k$ be a field of characteristic $p$. Then $H^{*}(BG;k)$ and $H_*(\Omega BG{{}^{{}^{\wedge }}_p};k)$ are $A_\infty$ algebras whose structure we determine up to quasi-isomorphism.
Let p be a prime. A pro-p group G is said to be 1-smooth if it can be endowed with a continuous representation
$\theta \colon G\to \mathrm {GL}_1(\mathbb {Z}_p)$
such that every open subgroup H of G, together with the restriction
$\theta \vert _H$
, satisfies a formal version of Hilbert 90. We prove that every 1-smooth pro-p group contains a unique maximal closed abelian normal subgroup, in analogy with a result by Engler and Koenigsmann on maximal pro-p Galois groups of fields, and that if a 1-smooth pro-p group is solvable, then it is locally uniformly powerful, in analogy with a result by Ware on maximal pro-p Galois groups of fields. Finally, we ask whether 1-smooth pro-p groups satisfy a “Tits’ alternative.”
For any given subgroup H of a finite group G, the Quillen poset ${\mathcal {A}}_p(G)$ of nontrivial elementary abelian p-subgroups is obtained from ${\mathcal {A}}_p(H)$ by attaching elements via their centralisers in H. We exploit this idea to study Quillen’s conjecture, which asserts that if ${\mathcal {A}}_p(G)$ is contractible then G has a nontrivial normal p-subgroup. We prove that the original conjecture is equivalent to the ${{\mathbb {Z}}}$-acyclic version of the conjecture (obtained by replacing ‘contractible’ by ‘${{\mathbb {Z}}}$-acyclic’). We also work with the ${\mathbb {Q}}$-acyclic (strong) version of the conjecture, reducing its study to extensions of direct products of simple groups of p-rank at least $2$. This allows us to extend results of Aschbacher and Smith and to establish the strong conjecture for groups of p-rank at most $4$.
In this paper, we study the structure of the rational cohomology groups of the IA-automorphism group $\mathrm {IA}_3$ of the free group of rank three by using combinatorial group theory and representation theory. In particular, we detect a nontrivial irreducible component in the second cohomology group of $\mathrm {IA}_3$, which is not contained in the image of the cup product map of the first cohomology groups. We also show that the triple cup product of the first cohomology groups is trivial. As a corollary, we obtain that the fourth term of the lower central series of $\mathrm {IA}_3$ has finite index in that of the Andreadakis–Johnson filtration of $\mathrm {IA}_3$.
The Σ-invariants of Bieri–Neumann–Strebel and Bieri–Renz involve an action of a discrete group G on a geometrically suitable space M. In the early versions, M was always a finite-dimensional Euclidean space on which G acted by translations. A substantial literature exists on this, connecting the invariants to group theory and to tropical geometry (which, actually, Σ-theory anticipated). More recently, we have generalized these invariants to the case where M is a proper CAT(0) space on which G acts by isometries. The “zeroth stage” of this was developed in our paper [BG16]. The present paper provides a higher-dimensional extension of the theory to the “nth stage” for any n.