We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article, we study rational matrix representations of VZ p-groups (p is any prime). Using our findings on VZ p-groups, we explicitly obtain all inequivalent irreducible rational matrix representations of all p-groups of order $\leq p^4$. Furthermore, we establish combinatorial formulae to determine the Wedderburn decompositions of rational group algebras for VZ p-groups and all p-groups of order $\leq p^4$, ensuring simplicity in the process.
Let A be an F-central simple algebra of degree $m^2=\prod _{i=1}^k p_i^{2\alpha _i}$ and G be a subgroup of the unit group of A such that $F[G]=A$. We prove that if G is a central product of two of its subgroups M and N, then $F[M]\otimes _F F[N]\cong F[G]$. Also, if G is locally nilpotent, then G is a central product of subgroups $H_i$, where $[F[H_i]:F]=p_i^{2\alpha _i}$, $A=F[G]\cong F[H_1]\otimes _F \cdots \otimes _F F[H_k]$ and $H_i/Z(G)$ is the Sylow $p_i$-subgroup of $G/Z(G)$ for each i with $1\leq i\leq k$. Additionally, there is an element of order $p_i$ in F for each i with $1\leq i\leq k$.
Let G be a finite solvable group. We prove that if $\chi\in{{\operatorname{Irr}}}(G)$ has odd degree and $\chi(1)$ is the minimal degree of the nonlinear irreducible characters of G, then $G/\operatorname{Ker}\chi$ is nilpotent-by-abelian.
We introduce and study the notion of a generalised Hecke orbit in a Shimura variety. We define a height function on such an orbit and study its properties. We obtain lower bounds for the sizes of Galois orbits of points in a generalised Hecke orbit in terms of this height function, assuming the ‘weakly adelic Mumford–Tate hypothesis’ and prove the generalised André–Pink–Zannier conjecture under this assumption, using Pila–Zannier strategy.
We revisit Haiman’s conjecture on the relations between characters of Kazdhan–Lusztig basis elements of the Hecke algebra over $S_n$. The conjecture asserts that, for purposes of character evaluation, any Kazhdan–Lusztig basis element is reducible to a sum of the simplest possible ones (those associated to so-called codominant permutations). When the basis element is associated to a smooth permutation, we are able to give a geometric proof of this conjecture. On the other hand, if the permutation is singular, we provide a counterexample.
We study covering numbers of subsets of the symmetric group $S_n$ that exhibit closure under conjugation, known as normal sets. We show that for any $\epsilon>0$, there exists $n_0$ such that if $n>n_0$ and A is a normal subset of the symmetric group $S_n$ of density $\ge e^{-n^{2/5 - \epsilon }}$, then $A^2 \supseteq A_n$. This improves upon a seminal result of Larsen and Shalev (Inventiones Math., 2008), with our $2/5$ in the double exponent replacing their $1/4$.
Our proof strategy combines two types of techniques. The first is ‘traditional’ techniques rooted in character bounds and asymptotics for the Witten zeta function, drawing from the foundational works of Liebeck–Shalev, Larsen–Shalev, and more recently, Larsen–Tiep. The second is a sharp hypercontractivity theorem in the symmetric group, which was recently obtained by Keevash and Lifshitz. This synthesis of algebraic and analytic methodologies not only allows us to attain our improved bounds but also provides new insights into the behavior of general independent sets in normal Cayley graphs over symmetric groups.
We examine a cyclic order on the directed edges of a tree whose vertices have cyclically ordered links. We use it to show that a graph of groups with left-cyclically ordered vertex groups and convex left-ordered edge groups is left-cyclically orderable.
Using tools from computable analysis, we develop a notion of effectiveness for general dynamical systems as those group actions on arbitrary spaces that contain a computable representative in their topological conjugacy class. Most natural systems one can think of are effective in this sense, including some group rotations, affine actions on the torus and finitely presented algebraic actions. We show that for finitely generated and recursively presented groups, every effective dynamical system is the topological factor of a computable action on an effectively closed subset of the Cantor space. We then apply this result to extend the simulation results available in the literature beyond zero-dimensional spaces. In particular, we show that for a large class of groups, many of these natural actions are topological factors of subshifts of finite type.
We investigate when a group of the form $G\times \mathbb {Z}^m\ (m\geq 1)$ has the finitely generated fixed subgroup property of automorphisms ($\mathrm {FGFP_a}$), by using the BNS-invariant, and provide some partial answers and nontrivial examples.
We show that if one of various cycle types occurs in the permutation action of a finite group on the cosets of a given subgroup, then every almost conjugate subgroup is conjugate. As a number theoretic application, corresponding decomposition types of primes effect that a number field is determined by the Dedekind zeta function. As a geometric application, coverings of Riemannian manifolds with certain geodesic lifting behaviours must be isometric.
Let $\alpha $ be a complex valued $2$-cocycle of finite order of a finite group $G.$ The nth Frobenius–Schur indicator of an irreducible $\alpha $-character of G is defined and its properties are investigated. The indicator is interpreted in general for $n =2$ and it is shown that it can be used to determine whether an irreducible $\alpha $-character is real-valued under the assumption that the order of $\alpha $ and its cohomology class are both $2$. A formula, involving the real $\alpha $-regular conjugacy classes of $G,$ is found to count the number of real-valued irreducible $\alpha $-characters of G under the additional assumption that these characters are class functions.
We settle the noninner automorphism conjecture for finite p-groups ($p> 2$) with certain conditions. Also, we give an elementary and short proof of the main result of Ghoraishi [‘On noninner automorphisms of finite nonabelian p-groups’, Bull. Aust. Math. Soc.89(2) (2014) 202–209].
Let $\mathbb {Z}$ be the additive (semi)group of integers. We prove that for a finite semigroup S the direct product $\mathbb {Z}\times S$ contains only countably many subdirect products (up to isomorphism) if and only if S is regular. As a corollary we show that $\mathbb {Z}\times S$ has only countably many subsemigroups (up to isomorphism) if and only if S is completely regular.
We study actions of higher rank lattices $\Gamma <G$ on hyperbolic spaces and we show that all such actions satisfying mild properties come from the rank-one factors of G. In particular, all non-elementary isometric actions on an unbounded hyperbolic space are of this type.
We study the vectorial length compactification of the space of conjugacy classes of maximal representations of the fundamental group $\Gamma$ of a closed hyperbolic surface $\Sigma$ in $\textrm{PSL}(2,{\mathbb{R}})^n$. We identify the boundary with the sphere ${\mathbb{P}}(({\mathcal{ML}})^n)$, where $\mathcal{ML}$ is the space of measured geodesic laminations on $\Sigma$. In the case $n=2$, we give a geometric interpretation of the boundary as the space of homothety classes of ${\mathbb{R}}^2$-mixed structures on $\Sigma$. We associate to such a structure a dual tree-graded space endowed with an ${\mathbb{R}}_+^2$-valued metric, which we show to be universal with respect to actions on products of two $\mathbb{R}$-trees with the given length spectrum.
Let G be a torsion-free, finitely generated, nilpotent and metabelian group. In this work, we show that G embeds into the group of orientation-preserving $C^{1+\alpha }$-diffeomorphisms of the compact interval for all $\alpha < 1/k$, where k is the torsion-free rank of $G/A$ and A is a maximal abelian subgroup. We show that, in many situations, the corresponding $1/k$ is critical in the sense that there is no embedding of G with higher regularity. A particularly nice family where this happens is the family of $(2n+1)$-dimensional Heisenberg groups, for which we can show that the critical regularity is equal to $1+1/n$.
Let V be a finite dimensional vector space over the field with p elements, where p is a prime number. Given arbitrary $\alpha ,\beta \in \mathrm {GL}(V)$, we consider the semidirect products $V\rtimes \langle \alpha \rangle $ and $V\rtimes \langle \beta \rangle $, and show that if $V\rtimes \langle \alpha \rangle $ and $V\rtimes \langle \beta \rangle $ are isomorphic, then $\alpha $ must be similar to a power of $\beta $ that generates the same subgroup as $\beta $; that is, if H and K are cyclic subgroups of $\mathrm {GL}(V)$ such that $V\rtimes H\cong V\rtimes K$, then H and K must be conjugate subgroups of $\mathrm {GL}(V)$. If we remove the cyclic condition, there exist examples of nonisomorphic, let alone nonconjugate, subgroups H and K of $\mathrm {GL}(V)$ such that $V\rtimes H\cong V\rtimes K$. Even if we require that noncyclic subgroups H and K of $\mathrm {GL}(V)$ be abelian, we may still have $V\rtimes H\cong V\rtimes K$ with H and K nonconjugate in $\mathrm {GL}(V)$, but in this case, H and K must at least be isomorphic. If we replace V by a free module U over ${\mathbb {Z}}/p^m{\mathbb {Z}}$ of finite rank, with $m>1$, it may happen that $U\rtimes H\cong U\rtimes K$ for nonconjugate cyclic subgroups of $\mathrm {GL}(U)$. If we completely abandon our requirements on V, a sufficient criterion is given for a finite group G to admit nonconjugate cyclic subgroups H and K of $\mathrm {Aut}(G)$ such that $G\rtimes H\cong G\rtimes K$. This criterion is satisfied by many groups.