We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The complete classification of the finite simple groups that are $(2,3)$-generated is a problem which is still open only for orthogonal groups. Here, we construct $(2, 3)$-generators for the finite odd-dimensional orthogonal groups $\Omega _{2k+1}(q)$, $k\geq 4$. As a byproduct, we also obtain $(2,3)$-generators for $\Omega _{4k}^+(q)$ with $k\geq 3$ and q odd, and for $\Omega _{4k+2}^\pm (q)$ with $k\geq 4$ and $q\equiv \pm 1~ \mathrm {(mod~ 4)}$.
We define a notion of modular forms of half-integral weight on the quaternionic exceptional groups. We prove that they have a well-behaved notion of Fourier coefficients, which are complex numbers defined up to multiplication by ${\pm }1$. We analyze the minimal modular form $\Theta _{F_4}$ on the double cover of $F_4$, following Loke–Savin and Ginzburg. Using $\Theta _{F_4}$, we define a modular form of weight $\tfrac {1}{2}$ on (the double cover of) $G_2$. We prove that the Fourier coefficients of this modular form on $G_2$ see the $2$-torsion in the narrow class groups of totally real cubic fields.
We initiate a systematic study of the perfection of affine group schemes of finite type over fields of positive characteristic. The main result intrinsically characterises and classifies the perfections of reductive groups and obtains a bijection with the set of classifying spaces of compact connected Lie groups topologically localised away from the characteristic. We also study the representations of perfectly reductive groups. We establish a highest weight classification of simple modules, the decomposition into blocks, and relate extension groups to those of the underlying abstract group.
In this article, we explore the problem of determining isomorphisms between the twisted complex group algebras of finite $p$-groups. This problem bears similarity to the classical group algebra isomorphism problem and has been recently examined by Margolis-Schnabel. Our focus lies on a specific invariant, referred to as the generalized corank, which relates to the twisted complex group algebra isomorphism problem. We provide a solution for non-abelian $p$-groups with generalized corank at most three.
We construct an unfolding path in Outer space which does not converge in the boundary, and instead it accumulates on the entire 1-simplex of projectivized length measures on a nongeometric arational ${\mathbb R}$-tree T. We also show that T admits exactly two dual ergodic projective currents. This is the first nongeometric example of an arational tree that is neither uniquely ergodic nor uniquely ergometric.
Given an affine Coxeter group W, the corresponding Shi arrangement is a refinement of the corresponding Coxeter hyperplane arrangements that was introduced by Shi to study Kazhdan–Lusztig cells for W. Shi showed that each region of the Shi arrangement contains exactly one element of minimal length in W. Low elements in W were introduced to study the word problem of the corresponding Artin–Tits (braid) group and turns out to produce automata to study the combinatorics of reduced words in W. In this article, we show, in the case of an affine Coxeter group, that the set of minimal length elements of the regions in the Shi arrangement is precisely the set of low elements, settling a conjecture of Dyer and the second author in this case. As a by-product of our proof, we show that the descent walls – the walls that separate a region from the fundamental alcove – of any region in the Shi arrangement are precisely the descent walls of the alcove of its corresponding low element.
Let $F$ be a separable integral binary form of odd degree $N \geq 5$. A result of Darmon and Granville known as ‘Faltings plus epsilon’ implies that the degree-$N$superelliptic equation$y^2 = F(x,z)$ has finitely many primitive integer solutions. In this paper, we consider the family $\mathscr {F}_N(f_0)$ of degree-$N$ superelliptic equations with fixed leading coefficient $f_0 \in \mathbb {Z} \smallsetminus \pm \mathbb {Z}^2$, ordered by height. For every sufficiently large $N$, we prove that among equations in the family $\mathscr {F}_N(f_0)$, more than $74.9\,\%$ are insoluble, and more than $71.8\,\%$ are everywhere locally soluble but fail the Hasse principle due to the Brauer–Manin obstruction. We further show that these proportions rise to at least $99.9\,\%$ and $96.7\,\%$, respectively, when $f_0$ has sufficiently many prime divisors of odd multiplicity. Our result can be viewed as a strong asymptotic form of ‘Faltings plus epsilon’ for superelliptic equations and constitutes an analogue of Bhargava's result that most hyperelliptic curves over $\mathbb {Q}$ have no rational points.
Let $\Gamma =\langle I_{1}, I_{2}, I_{3}\rangle $ be the complex hyperbolic $(4,4,\infty )$ triangle group with $I_1I_3I_2I_3$ being unipotent. We show that the limit set of $\Gamma $ is connected and the closure of a countable union of $\mathbb {R}$-circles.
We develop a theory of parabolic induction and restriction functors relating modules over Coulomb branch algebras, in the sense of Braverman-Finkelberg-Nakajima. Our functors generalize Bezrukavnikov-Etingof’s induction and restriction functors for Cherednik algebras, but their definition uses different tools.
After this general definition, we focus on quiver gauge theories attached to a quiver $\Gamma $. The induction and restriction functors allow us to define a categorical action of the corresponding symmetric Kac-Moody algebra $\mathfrak {g}_{\Gamma }$ on category $ \mathcal {O}$ for these Coulomb branch algebras. When $ \Gamma $ is of Dynkin type, the Coulomb branch algebras are truncated shifted Yangians and quantize generalized affine Grassmannian slices. Thus, we regard our action as a categorification of the geometric Satake correspondence.
To establish this categorical action, we define a new class of ‘flavoured’ KLRW algebras, which are similar to the diagrammatic algebras originally constructed by the second author for the purpose of tensor product categorification. We prove an equivalence between the category of Gelfand-Tsetlin modules over a Coulomb branch algebra and the modules over a flavoured KLRW algebra. This equivalence relates the categorical action by induction and restriction functors to the usual categorical action on modules over a KLRW algebra.
A group $G=AB$ is the weakly mutually permutable product of the subgroups A and B, if A permutes with every subgroup of B containing $A \cap B$ and B permutes with every subgroup of A containing $A \cap B$. Weakly mutually permutable products were introduced by the first, second and fourth authors [‘Generalised mutually permutable products and saturated formations’, J. Algebra595 (2022), 434–443] who showed that if $G'$ is nilpotent, A permutes with every Sylow subgroup of B and B permutes with every Sylow subgroup of A, then $G^{\mathfrak {F}}=A^{\mathfrak {F}}B^{\mathfrak {F}} $, where $ \mathfrak {F} $ is a saturated formation containing $ \mathfrak {U} $, the class of supersoluble groups. In this article we prove results on weakly mutually permutable products concerning $ \mathfrak {F} $-residuals, $ \mathfrak {F} $-projectors and $\mathfrak {F}$-normalisers. As an application of some of our arguments, we unify some results on weakly mutually $sn$-products.
Brazil et al. [‘Maximal subgroups of infinite symmetric groups’, Proc. Lond. Math. Soc. (3)68(1) (1994), 77–111] provided a new family of maximal subgroups of the symmetric group $G(X)$ defined on an infinite set X. It is easy to see that, in this case, $G(X)$ contains subsemigroups that are not groups, but nothing is known about nongroup maximal subsemigroups of $G(X)$. We provide infinitely many examples of such semigroups.
Every countable group G can be embedded in a finitely generated group $G^*$ that is hopfian and complete, that is, $G^*$ has trivial centre and every epimorphism $G^*\to G^*$ is an inner automorphism. Every finite subgroup of $G^*$ is conjugate to a finite subgroup of G. If G has a finite presentation (respectively, a finite classifying space), then so does $G^*$. Our construction of $G^*$ relies on the existence of closed hyperbolic 3-manifolds that are asymmetric and non-Haken.
Let G be a finite group and $\mathrm {Irr}(G)$ the set of all irreducible complex characters of G. Define the codegree of $\chi \in \mathrm {Irr}(G)$ as $\mathrm {cod}(\chi ):={|G:\mathrm {ker}(\chi ) |}/{\chi (1)}$ and let $\mathrm {cod}(G):=\{\mathrm {cod}(\chi ) \mid \chi \in \mathrm {Irr}(G)\}$ be the codegree set of G. Let $\mathrm {A}_n$ be an alternating group of degree $n \ge 5$. We show that $\mathrm {A}_n$ is determined up to isomorphism by $\operatorname {cod}(\mathrm {A}_n)$.
In the previous paper, we defined a new category which categorifies the Hecke algebra. This is a generalization of the theory of Soergel bimodules. To prove theorems, the existences of certain homomorphisms between Bott–Samelson bimodules are assumed. In this paper, we prove this assumption. We only assume the vanishing of certain two-colored quantum binomial coefficients.
We prove new results concerning the additive Galois module structure of wildly ramified non-abelian extensions $K/\mathbb{Q}$ with Galois group isomorphic to $A_4$, $S_4$, $A_5$, and dihedral groups of order $2p^n$ for certain prime powers $p^n$. In particular, when $K/\mathbb{Q}$ is a Galois extension with Galois group $G$ isomorphic to $A_4$, $S_4$ or $A_5$, we give necessary and sufficient conditions for the ring of integers $\mathcal{O}_{K}$ to be free over its associated order in the rational group algebra $\mathbb{Q}[G]$.
The algebraic mapping torus $M_{\Phi }$ of a group $G$ with an automorphism $\Phi$ is the HNN-extension of $G$ in which conjugation by the stable letter performs $\Phi$. We classify the Dehn functions of $M_{\Phi }$ in terms of $\Phi$ for a number of right-angled Artin groups (RAAGs) $G$, including all $3$-generator RAAGs and $F_k \times F_l$ for all $k,l \geq 2$.
Given a group $G$ and an integer $n\geq 0$, we consider the family ${\mathcal F}_n$ of all virtually abelian subgroups of $G$ of $\textrm{rank}$ at most $n$. In this article, we prove that for each $n\ge 2$ the Bredon cohomology, with respect to the family ${\mathcal F}_n$, of a free abelian group with $\textrm{rank}$$k \gt n$ is nontrivial in dimension $k+n$; this answers a question of Corob Cook et al. (Homology Homotopy Appl. 19(2) (2017), 83–87, Question 2.7). As an application, we compute the minimal dimension of a classifying space for the family ${\mathcal F}_n$ for braid groups, right-angled Artin groups, and graphs of groups whose vertex groups are infinite finitely generated virtually abelian groups, for all $n\ge 2$. The main tools that we use are the Mayer–Vietoris sequence for Bredon cohomology, Bass–Serre theory, and the Lück–Weiermann construction.
We prove a joint partial equidistribution result for common perpendiculars with given density on equidistributing equidistant hypersurfaces, towards a measure supported on truncated stable leaves. We recover a result of Marklof on the joint partial equidistribution of Farey fractions at a given density, and give several analogous arithmetic applications, including in Bruhat–Tits trees.
The hypercontractive inequality is a fundamental result in analysis, with many applications throughout discrete mathematics, theoretical computer science, combinatorics and more. So far, variants of this inequality have been proved mainly for product spaces, which raises the question of whether analogous results hold over non-product domains.
We consider the symmetric group, $S_n$, one of the most basic non-product domains, and establish hypercontractive inequalities on it. Our inequalities are most effective for the class of global functions on $S_n$, which are functions whose $2$-norm remains small when restricting $O(1)$ coordinates of the input, and assert that low-degree, global functions have small q-norms, for $q>2$.
As applications, we show the following:
1. An analog of the level-d inequality on the hypercube, asserting that the mass of a global function on low degrees is very small. We also show how to use this inequality to bound the size of global, product-free sets in the alternating group $A_n$.
2. Isoperimetric inequalities on the transposition Cayley graph of $S_n$ for global functions that are analogous to the KKL theorem and to the small-set expansion property in the Boolean hypercube.
3. Hypercontractive inequalities on the multi-slice and stability versions of the Kruskal–Katona Theorem in some regimes of parameters.