We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce and study two conditions on groups of homeomorphisms of Cantor space, namely the conditions of being vigorous and of being flawless. These concepts are dynamical in nature, and allow us to study a certain interplay between the dynamics of an action and the algebraic properties of the acting group. A group $G\leq \operatorname {Homeo}(\mathfrak {C})$ is vigorous if for any clopen set A and proper clopen subsets B and C of A, there is $\gamma \in G$ in the pointwise stabiliser of $\mathfrak {C}\backslash A$ with $B\gamma \subseteq C$. A nontrivial group $G\leq \operatorname {Homeo}(\mathfrak {C})$ is flawless if for all k and w a nontrivial freely reduced product expression on k variables (including inverse symbols), a particular subgroup $w(G)_\circ $ of the verbal subgroup $w(G)$ is the whole group. We show: 1) simple vigorous groups are either two-generated by torsion elements, or not finitely generated, 2) flawless groups are both perfect and lawless, 3) vigorous groups are simple if and only if they are flawless, and, 4) the class of vigorous simple subgroups of $\operatorname {Homeo}(\mathfrak {C})$ is fairly broad (the class is closed under various natural constructions and contains many well known groups, such as the commutator subgroups of the Higman–Thompson groups $G_{n,r}$, the Brin-Thompson groups $nV$, Röver’s group $V(\Gamma )$, and others of Nekrashevych’s ‘simple groups of dynamical origin’).
Let G be a connected semisimple real algebraic group. For a Zariski dense Anosov subgroup $\Gamma <G$ with respect to a parabolic subgroup $P_\theta $, we prove that any $\Gamma $-Patterson–Sullivan measure charges no mass on any proper subvariety of $G/P_\theta $. More generally, we prove that for a Zariski dense $\theta $-transverse subgroup $\Gamma <G$, any $(\Gamma , \psi )$-Patterson–Sullivan measure charges no mass on any proper subvariety of $G/P_\theta $, provided the $\psi $-Poincaré series of $\Gamma $ diverges at its abscissa of convergence. In particular, our result also applies to relatively Anosov subgroups.
The structure of groups in which every element has prime power order (CP-groups) is extensively studied. We first investigate the properties of group $G$ such that each element of $G\setminus N$ has prime power order. It is proved that $N$ is solvable or every non-solvable chief factor $H/K$ of $G$ satisfying $H\leq N$ is isomorphic to $PSL_2(3^f)$ with $f$ a 2-power. This partially answers the question proposed by Lewis in 2023, asking whether $G\cong M_{10}$? Furthermore, we prove that if each element $x\in G\backslash N$ has prime power order and ${\bf C}_G(x)$ is maximal in $G$, then $N$ is solvable. Relying on this, we give the structure of group $G$ with normal subgroup $N$ such that ${\bf C}_G(x)$ is maximal in $G$ for any element $x\in G\setminus N$. Finally, we investigate the structure of a normal subgroup $N$ when the centralizer ${\bf C}_G(x)$ is maximal in $G$ for any element $x\in N\setminus {\bf Z}(N)$, which is a generalization of results of Zhao, Chen, and Guo in 2020, investigating a special case that $N=G$ for our main result. We also provide a new proof for Zhao, Chen, and Guo's results above.
We study analogues of Kronecker coefficients for symmetric inverse semigroups, for dual symmetric inverse semigroups and for the inverse semigroups of bijections between subquotients of finite sets. In all cases, we reduce the problem of determination of such coefficients to some group-theoretic and combinatorial problems. For symmetric inverse semigroups, we provide an explicit formula in terms of the classical Kronecker and Littlewood–Richardson coefficients for symmetric groups.
This paper is the first of a two part series devoted to describing relations between congruence and crystallographic braid groups. We recall and introduce some elements belonging to congruence braid groups and we establish some (iso)-morphisms between crystallographic braid groups and corresponding quotients of congruence braid groups.
Let $p \geq 5$ be a prime number, and let $G = {\mathrm {SL}}_2(\mathbb {Q}_p)$. Let $\Xi = {\mathrm {Spec}}(Z)$ denote the spectrum of the centre Z of the pro-p Iwahori–Hecke algebra of G with coefficients in a field k of characteristic p. Let $\mathcal {R} \subset \Xi \times \Xi $ denote the support of the pro-p Iwahori ${\mathrm {Ext}}$-algebra of G, viewed as a $(Z,Z)$-bimodule. We show that the locally ringed space $\Xi /\mathcal {R}$ is a projective algebraic curve over ${\mathrm {Spec}}(k)$ with two connected components and that each connected component is a chain of projective lines. For each Zariski open subset U of $\Xi /\mathcal {R}$, we construct a stable localising subcategory $\mathcal {L}_U$ of the category of smooth k-linear representations of G.
Let $\Gamma $ be a finite group, let $\theta $ be an involution of $\Gamma $ and let $\rho $ be an irreducible complex representation of $\Gamma $. We bound ${\operatorname {dim}} \rho ^{\Gamma ^{\theta }}$ in terms of the smallest dimension of a faithful $\mathbb {F}_p$-representation of $\Gamma /\operatorname {\mathrm {Rad}}_p(\Gamma )$, where p is any odd prime and $\operatorname {\mathrm {Rad}}_p(\Gamma )$ is the maximal normal p-subgroup of $\Gamma $.
This implies, in particular, that if $\mathbf {G}$ is a group scheme over $\mathbb {Z}$ and $\theta $ is an involution of $\mathbf {G}$, then the multiplicity of any irreducible representation in $C^\infty \left( \mathbf {G}(\mathbb {Z}_p)/ \mathbf {G} ^{\theta }(\mathbb {Z}_p) \right)$ is bounded, uniformly in p.
In this note we investigate the centraliser of a linearly growing element of $\mathrm{Out}(F_n)$ (that is, a root of a Dehn twist automorphism), and show that it has a finite index subgroup mapping onto a direct product of certain “equivariant McCool groups” with kernel a finitely generated free abelian group. In particular, this allows us to show it is VF and hence finitely presented.
We show that a virtually residually finite rationally solvable (RFRS) group $G$ of type $\mathtt {FP}_n(\mathbb {Q})$ virtually algebraically fibres with kernel of type $\mathtt {FP}_n(\mathbb {Q})$ if and only if the first $n$$\ell ^2$-Betti numbers of $G$ vanish, that is, $b_p^{(2)}(G) = 0$ for $0 \leqslant p \leqslant n$. This confirms a conjecture of Kielak. We also offer a variant of this result over other fields, in particular in positive characteristic. As an application of the main result, we show that amenable virtually RFRS groups of type $\mathtt {FP}(\mathbb {Q})$ are virtually Abelian. It then follows that if $G$ is a virtually RFRS group of type $\mathtt {FP}(\mathbb {Q})$ such that $\mathbb {Z} G$ is Noetherian, then $G$ is virtually Abelian. This confirms a conjecture of Baer for the class of virtually RFRS groups of type $\mathtt {FP}(\mathbb {Q})$, which includes (for instance) the class of virtually compact special groups.
We describe the $J$-invariant of a semisimple algebraic group $G$ over a generic splitting field of a Tits algebra of $G$ in terms of the $J$-invariant over the base field. As a consequence we prove a 10-year-old conjecture of Quéguiner-Mathieu, Semenov, and Zainoulline on the $J$-invariant of groups of type $\mathrm {D}_n$. In the case of type $\mathrm {D}_n$ we also provide explicit formulas for the first component and in some cases for the second component of the $J$-invariant.
We find an upper bound for the number of groups of order n up to isomorphism in the variety ${\mathfrak {S}}={\mathfrak {A}_p}{\mathfrak {A}_q}{\mathfrak {A}_r}$, where p, q and r are distinct primes. We also find a bound on the orders and on the number of conjugacy classes of subgroups that are maximal amongst the subgroups of the general linear group that are also in the variety $\mathfrak {A}_q\mathfrak {A}_r$.
We construct the first examples of infinite sharply 2-transitive groups which are finitely generated. Moreover, we construct such a group that has Kazhdan property (T), is simple, has exactly four conjugacy classes and we show that this number is as small as possible.
We prove that centralisers of elements in [finitely generated free]-by-cyclic groups are computable. As a corollary, given two conjugate elements in a [finitely generated free]-by-cyclic group, the set of conjugators can be computed and the conjugacy problem with context-free constraints is decidable. We pose several problems arising naturally from this work.
For closed subgroups L and R of a compact Lie group G, a left L-space X, and an L-equivariant continuous map $A:X\to G/R$, we introduce the twisted action of the equivariant cohomology $H_R^{\bullet }(\mathrm {pt},\Bbbk )$ on the equivariant cohomology $H_L^{\bullet }(X,\Bbbk )$. Considering this action as a right action, $H_L^{\bullet }(X,\Bbbk )$ becomes a bimodule together with the canonical left action of $H_L^{\bullet }(\mathrm {pt},\Bbbk )$. Using this bimodule structure, we prove an equivariant version of the Künneth isomorphism. We apply this result to the computation of the equivariant cohomologies of Bott–Samelson varieties and to a geometric construction of the bimodule morphisms between them.
A digraph group is a group defined by non-empty presentation with the property that each relator is of the form $R(x, y)$, where x and y are distinct generators and $R(\cdot , \cdot )$ is determined by some fixed cyclically reduced word $R(a, b)$ that involves both a and b. Associated with each such presentation is a digraph whose vertices correspond to the generators and whose arcs correspond to the relators. In this article, we consider digraph groups for strong digraphs that are digon-free and triangle-free. We classify when the digraph group is finite and show that in these cases it is cyclic, giving its order. We apply this result to the Cayley digraph of the generalized quaternion group, to circulant digraphs, and to Cartesian and direct products of strong digraphs.
In this paper, we prove some orthogonality relations for representations arising from deep level Deligne–Lusztig schemes of Coxeter type. This generalizes previous results of Lusztig [Lus04], and of Chan and the second author [CI21b]. Applications include the study of smooth representations of p-adic groups in the cohomology of p-adic Deligne–Lusztig spaces and their relation to the local Langlands correspondences. Also, the geometry of deep level Deligne–Lusztig schemes gets accessible, in the spirit of Lusztig’s work [Lus76].
Let M be a Puiseux monoid, that is, a monoid consisting of nonnegative rationals (under standard addition). In this paper, we study factorisations in atomic Puiseux monoids through the lens of their associated Betti graphs. The Betti graph of $b \in M$ is the graph whose vertices are the factorisations of b with edges between factorisations that share at least one atom. If the Betti graph associated to b is disconnected, then we call b a Betti element of M. We explicitly compute the set of Betti elements for a large class of Puiseux monoids (the atomisations of certain infinite sequences of rationals). The process of atomisation is quite useful in studying the arithmetic of Puiseux monoids, and it has been actively considered in recent literature. This leads to an argument that for every positive integer n, there exists an atomic Puiseux monoid with exactly n Betti elements.
We introduce a new invariant, the conductor exponent, of a generic irreducible Casselman–Wallach representation of $\operatorname {\mathrm {GL}}_n(F)$, where F is an archimedean local field, that quantifies the extent to which this representation may be ramified. We also determine a distinguished vector, the newform, occurring with multiplicity one in this representation, with the complexity of this vector measured in a natural way by the conductor exponent. Finally, we show that the newform is a test vector for $\operatorname {\mathrm {GL}}_n \times \operatorname {\mathrm {GL}}_n$ and $\operatorname {\mathrm {GL}}_n \times \operatorname {\mathrm {GL}}_{n - 1}$ Rankin–Selberg integrals when the second representation is unramified. This theory parallels an analogous nonarchimedean theory due to Jacquet, Piatetski-Shapiro, and Shalika; combined, this completes a global theory of newforms for automorphic representations of $\operatorname {\mathrm {GL}}_n$ over number fields. By-products of the proofs include new proofs of Stade’s formulæ and a new resolution of the test vector problem for archimedean Godement–Jacquet zeta integrals.
Let ${\mathcal G}$ be a linear algebraic group over k, where k is an algebraically closed field, a pseudo-finite field or the valuation ring of a non-archimedean local field. Let $G= {\mathcal G}(k)$. We prove that if $\gamma\in G$ such that γ is a commutator and $\delta\in G$ such that $\langle \delta\rangle= \langle \gamma\rangle$ then δ is a commutator. This generalises a result of Honda for finite groups. Our proof uses the Lefschetz principle from first-order model theory.
To any free group automorphism, we associate a real pretree with several nice properties. First, it has a rigid/non-nesting action of the free group with trivial arc stabilizers. Secondly, there is an expanding pretree-automorphism of the real pretree that represents the free group automorphism. Finally and crucially, the loxodromic elements are exactly those whose (conjugacy class) length grows exponentially under iteration of the automorphism; thus, the action on the real pretree is able to detect the growth type of an element.
This construction extends the theory of metric trees that has been used to study free group automorphisms. The new idea is that one can equivariantly blow up an isometric action on a real tree with respect to other real trees and get a rigid action on a treelike structure known as a real pretree. Topology plays no role in this construction as all the work is done in the language of pretrees (intervals).