To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate properties of closed approximate subgroups of locally compact groups, with a particular interest for approximate lattices (i.e., those approximate subgroups that are discrete and have finite co-volume).
We prove an approximate subgroup version of Cartan’s closed-subgroup theorem and study some applications. We give a structure theorem for closed approximate subgroups of amenable groups in the spirit of the Breuillard–Green–Tao theorem. We then prove two results concerning approximate lattices: we extend to amenable groups a structure theorem for mathematical quasi-crystals due to Meyer; we prove results concerning intersections of radicals of Lie groups and discrete approximate subgroups generalising theorems due to Auslander, Bieberbach and Mostow. As an underlying theme, we exploit the notion of good models of approximate subgroups that stems from the work of Hrushovski, and Breuillard, Green and Tao. We show how one can draw information about a given approximate subgroup from a good model, when it exists.
In this paper, we compare the $\mathbb J$-stratification (or the semi-module stratification) and the Ekedahl–Oort stratification of affine Deligne–Lusztig varieties in the superbasic case. In particular, we classify the cases where the $\mathbb J$-stratification gives a refinement of the Ekedahl–Oort stratification, which include many interesting cases such that the affine Deligne-Lusztig variety admits a simple geometric structure.
Motivated by approaches to the word problem for one-relation monoids arising from work of Adian and Oganesian (1987), Guba (1997), and Ivanov, Margolis, and Meakin (2001), we study the submonoid and rational subset membership problems in one-relation monoids and in positive one-relator groups. We give the first known examples of positive one-relator groups with undecidable submonoid membership problem, and we apply this to give the first known examples of one-relation monoids with undecidable submonoid membership problem. We construct several infinite families of one-relation monoids with undecidable submonoid membership problem, including examples that are defined by relations of the form $w=1$ but which are not groups, and examples defined by relations of the form $u=v$ where both of u and v are nonempty. As a consequence, we obtain a classification of the right-angled Artin groups that can arise as subgroups of one-relation monoids. We also give examples of monoids with a single defining relation of the form $aUb = a$ and examples of the form $aUb=aVa$, with undecidable rational subset membership problem. We give a one-relator group defined by a freely reduced word of the form $uv^{-1}$ with $u, v$ positive words, in which the prefix membership problem is undecidable. Finally, we prove the existence of a special two-relator inverse monoid with undecidable word problem, and in which both the relators are positive words. As a corollary, we also find a positive two-relator group with undecidable prefix membership problem. In proving these results, we introduce new methods for proving undecidability of the rational subset membership problem in monoids and groups, including by finding suitable embeddings of certain trace monoids.
For finite nilpotent groups $J$ and $N$, suppose $J$ acts on $N$ via automorphisms. We exhibit a decomposition of the first cohomology set in terms of the first cohomologies of the Sylow $p$-subgroups of $J$ that mirrors the primary decomposition of $H^1(J,N)$ for abelian $N$. We then show that if $N \rtimes J$ acts on some non-empty set $\Omega$, where the action of $N$ is transitive and for each prime $p$ a Sylow $p$-subgroup of $J$ fixes an element of $\Omega$, then $J$ fixes an element of $\Omega$.
The fine curve graph of a surface was introduced by Bowden, Hensel, and Webb as a graph consisting of essential simple closed curves in the surface. Long, Margalit, Pham, Verberne, and Yao proved that the automorphism group of the fine curve graph of a closed orientable surface is isomorphic to the homeomorphism group of the surface. In this paper, based on their argument, we prove that the automorphism group of the fine curve graph of a closed nonorientable surface $N$ of genus $g \geq 4$ is isomorphic to the homeomorphism group of $N$.
We explore the interplay between $\omega $-categoricity and pseudofiniteness for groups, and we conjecture that $\omega $-categorical pseudofinite groups are finite-by-abelian-by-finite. We show that the conjecture reduces to nilpotent p-groups of class 2, and give a proof that several of the known examples of $\omega $-categorical p-groups satisfy the conjecture. In particular, we show by a direct counting argument that for any odd prime p the ($\omega $-categorical) model companion of the theory of nilpotent class 2 exponent p groups, constructed by Saracino and Wood, is not pseudofinite, and that an $\omega $-categorical group constructed by Baudisch with supersimple rank 1 theory is not pseudofinite. We also survey some scattered literature on $\omega $-categorical groups over 50 years.
We define oriented Temperley–Lieb algebras for Hermitian symmetric spaces. This allows us to explain the existence of closed combinatorial formulae for the Kazhdan–Lusztig polynomials for these spaces.
Let be a commutative ring containing a primitive $l'$th root $\varepsilon $ of $1$. The infinitesimal q-Schur algebras over form an ascending chain of subalgebras of the q-Schur algebra , which are useful in studying representations of the Frobenius kernel of the associated quantum linear group. Let be the quantized enveloping algebra of $\mathfrak {gl}_n$ over . There is a natural surjective algebra homomorphism $\zeta _{d}$ from to . The map $\zeta _{d}$ restricts to a surjective algebra homomorphism $\zeta _{d,r}$ from to , where is a certain Hopf subalgebra of , which is closely related to Frobenius–Lusztig kernels of . We give the extra defining relations needed to define the infinitesimal q-Schur algebra as a quotient of . The map $\zeta _{d,r}$ induces a surjective algebra homomorphism , where is the modified quantum algebra associated with . We also give a generating set for the kernel of $\dot {\zeta }_{d,r}$. These results can be used to give a classification of irreducible -modules over a field of characteristic p.
We prove that virtually free groups are precisely the hyperbolic groups admitting a language of geodesic words containing a unique representative for each group element with bounded triangles. Equivalently, these are exactly the hyperbolic groups for which the model for the Gromov boundary defined by Silva is well defined.
We extend the notion of ascent-compatibility from symmetric groups to all Coxeter groups, thereby providing a type-independent framework for constructing families of modules of $0$-Hecke algebras. We apply this framework in type B to give representation–theoretic interpretations of a number of noteworthy families of type-B quasisymmetric functions. Next, we construct modules of the type-B$0$-Hecke algebra corresponding to type-B analogs of Schur functions and introduce a type-B analog of Schur Q-functions; we prove that these shifted domino functions expand positively in the type-B peak functions. We define a type-B analog of the $0$-Hecke–Clifford algebra, and we use this to provide representation–theoretic interpretations for both the type-B peak functions and the shifted domino functions. We consider the modules of this algebra induced from type-B$0$-Hecke modules constructed via ascent-compatibility and prove a general formula, in terms of type-B peak functions, for the type-B quasisymmetric characteristics of the restrictions of these modules.
In this article, we generalize results of Clozel and Ray (for $SL_2$ and $SL_n$, respectively) to give explicit ring-theoretic presentation in terms of a complete set of generators and relations of the Iwasawa algebra of the pro-p Iwahori subgroup of a simple, simply connected, split group $\mathbf {G}$ over ${{\mathbb Q}_p}$.
A nontrivial element of a group is a generalized torsion element if some products of its conjugates is the identity. The minimum number of such conjugates is called a generalized torsion order. We provide several restrictions for generalized torsion orders by using the Alexander polynomial.
An element of a group is called reversible if it is conjugate to its own inverse. Reversible elements are closely related to strongly reversible elements, which can be expressed as a product of two involutions. In this paper, we classify the reversible and strongly reversible elements in the quaternionic special linear group $ \mathrm {SL}(n,\mathbb {H})$ and quaternionic projective linear group $ \mathrm {PSL}(n,\mathbb {H})$. We prove that an element of $ \mathrm {SL}(n,\mathbb {H})$ (resp. $ \mathrm {PSL}(n,\mathbb {H})$) is reversible if and only if it is a product of two skew-involutions (resp. involutions).
Let $\Gamma $ be a finitely generated group of matrices over $\mathbb {C}$. We construct an isometric action of $\Gamma $ on a complete $\mathrm {CAT}(0)$ space such that the restriction of this action to any subgroup of $\Gamma $ containing no nontrivial unipotent elements is well behaved. As an application, we show that if M is a graph manifold that does not admit a nonpositively curved Riemannian metric, then any finite-dimensional $\mathbb {C}$-linear representation of $\pi _1(M)$ maps a nontrivial element of $\pi _1(M)$ to a unipotent matrix. In particular, the fundamental groups of such 3-manifolds do not admit any faithful finite-dimensional unitary representations.
We define an involution on the elliptic space of tempered unipotent representations of inner twists of a split simple $p$-adic group $G$ and investigate its behaviour with respect to restrictions to reductive quotients of maximal compact open subgroups. In particular, we formulate a precise conjecture about the relation with a version of Lusztig's nonabelian Fourier transform on the space of unipotent representations of the (possibly disconnected) reductive quotients of maximal compact subgroups. We give evidence for the conjecture, including proofs for ${\mathsf {SL}}_n$ and ${\mathsf {PGL}}_n$.
Let $\mathbf {G}$ be a connected reductive algebraic group over an algebraically closed field $\Bbbk $ and ${\mathbf B}$ be a Borel subgroup of ${\mathbf G}$. In this paper, we completely determine the composition factors of the permutation module $\mathbb {F}[{\mathbf G}/{\mathbf B}]$ for any field $\mathbb {F}$.
The group of order-preserving automorphisms of a finitely generated Archimedean ordered group of rank $2$ is either infinite cyclic or trivial according as the ratio in $\mathbb {R}$ of the generators of the subgroup is or is not quadratic over $\mathbb {Q}.$ In the case of an Archimedean ordered group of rank $2$ that is not finitely generated, the group of order-preserving automorphisms is free abelian. Criteria determining the rank of this free abelian group are established.
We give a precise classification, in terms of Shimura data, of all $1$-dimensional Shimura subvarieties of a moduli space of polarized abelian varieties.
We introduce the concept of almost $\mathcal {P}$-numbers where $\mathcal {P}$ is a class of groups. We survey the existing results in the literature for almost cyclic numbers, and give characterisations for almost abelian and almost nilpotent numbers proving these two concepts are equivalent.
Let G be a finite group and r be a prime divisor of the order of G. An irreducible character of G is said to be quasi r-Steinberg if it is non-zero on every r-regular element of G. A quasi r-Steinberg character of degree $\displaystyle |Syl_r(G)|$ is said to be weak r-Steinberg if it vanishes on the r-singular elements of $G.$ In this article, we classify the quasi r-Steinberg cuspidal characters of the general linear group $GL(n,q).$ Then we characterize the quasi r-Steinberg characters of $GL(2,q)$ and $GL(3,q).$ Finally, we obtain a classification of the weak r-Steinberg characters of $GL(n,q).$