We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the group $ \langle a,b,c,t \,:\, a^t=b,b^t=c,c^t=ca^{-1} \rangle$ is profinitely rigid amongst free-by-cyclic groups, providing the first example of a hyperbolic free-by-cyclic group with this property.
Using a recent result of Bowden, Hensel and Webb, we prove the existence of a homeomorphism with positive stable commutator length in the group of homeomorphisms of the Klein bottle which are isotopic to the identity.
A classical result of Reinhold Baer states that a group G = XN, which is the product of two normal supersoluble subgroups X and N, is supersoluble if and only if Gʹ is nilpotent. This result has been weakened in [6] for a finite group G: in fact, we do not need that both X and N are normal, but only that N is normal and X permutes with every maximal subgroup of each Sylow subgroup of N.
In our paper, we improve the result mentioned above by showing that we only need X to permute with the maximal subgroups of the non-cyclic Sylow subgroups of N. Also, we extend this result (and several others) to relevant classes of infinite groups.
The central idea behind our results stems from grasping the key aspects of what happens in [6]. It turns out that tensor products play a very crucial role, and it is precisely this shift of perspective that makes it possible not only to improve those results but also extend them to infinite groups.
We prove several results showing that every locally finite Borel graph whose large-scale geometry is ‘tree-like’ induces a treeable equivalence relation. In particular, our hypotheses hold if each component of the original graph either has bounded tree-width or is quasi-isometric to a tree, answering a question of Tucker-Drob. In the latter case, we moreover show that there exists a Borel quasi-isometry to a Borel forest, under the additional assumption of (componentwise) bounded degree. We also extend these results on quasi-treeings to Borel proper metric spaces. In fact, our most general result shows treeability of countable Borel equivalence relations equipped with an abstract wallspace structure on each class obeying some local finiteness conditions, which we call a proper walling. The proof is based on the Stone duality between proper wallings and median graphs (i.e., CAT(0) cube complexes). Finally, we strengthen the conclusion of treeability in these results to hyperfiniteness in the case where the original graph has one (selected) end per component, generalizing the same result for trees due to Dougherty–Jackson–Kechris.
Let W be a group endowed with a finite set S of generators. A representation $(V,\rho )$ of W is called a reflection representation of $(W,S)$ if $\rho (s)$ is a (generalized) reflection on V for each generator $s \in S$. In this article, we prove that for any irreducible reflection representation V, all the exterior powers $\bigwedge ^d V$, $d = 0, 1, \dots , \dim V$, are irreducible W-modules, and they are non-isomorphic to each other. This extends a theorem of R. Steinberg which is stated for Euclidean reflection groups. Moreover, we prove that the exterior powers (except for the 0th and the highest power) of two non-isomorphic reflection representations always give non-isomorphic W-modules. This allows us to construct numerous pairwise non-isomorphic irreducible representations for such groups, especially for Coxeter groups.
In a paper from 1980, Shelah constructed an uncountable group all of whose proper subgroups are countable. Assuming the continuum hypothesis, he constructed an uncountable group G that moreover admits an integer n satisfying that for every uncountable $X\subseteq G$, every element of G may be written as a group word of length n in the elements of X. The former is called a Jónsson group, and the latter is called a Shelah group.
In this paper, we construct a Shelah group on the grounds of $\textsf {{ZFC}}$ alone – that is, without assuming the continuum hypothesis. More generally, we identify a combinatorial condition (coming from the theories of negative square-bracket partition relations and strongly unbounded subadditive maps) sufficient for the construction of a Shelah group of size $\kappa $, and we prove that the condition holds true for all successors of regular cardinals (such as $\kappa =\aleph _1,\aleph _2,\aleph _3,\ldots $). This also yields the first consistent example of a Shelah group of size a limit cardinal.
We give a complete description of Rees quotients of free inverse semigroups given by positive relators that satisfy nontrivial identities, including identities in signature with involution. They are finitely presented in the class of all inverse semigroups. Those that satisfy a nontrivial semigroup identity have polynomial growth and can be given by an irredundant presentation with at most four relators. Those that satisfy a nontrivial identity in signature with involution, but which do not satisfy a nontrivial semigroup identity, have exponential growth and fall within two infinite families of finite presentations with two generators. The first family involves an unbounded number of relators and the other involves presentations with at most four relators of unbounded length. We give a new sufficient condition for which a finite set X of reduced words over an alphabet $A\cup A^{-1}$ freely generates a free inverse subsemigroup of $FI_A$ and use it in our proofs.
Given a presentation of a monoid $M$, combined work of Pride and of Guba and Sapir provides an exact sequence connecting the relation bimodule of the presentation (in the sense of Ivanov) with the first homology of the Squier complex of the presentation, which is naturally a $\mathbb ZM$-bimodule. This exact sequence was used by Kobayashi and Otto to prove the equivalence of Pride’s finite homological type property with the homological finiteness condition bi-$\mathrm {FP}_3$. Guba and Sapir used this exact sequence to describe the abelianization of a diagram group. We prove here a generalization of this exact sequence of bimodules for presentations of associative algebras. Our proof is more elementary than the original proof for the special case of monoids.
We study linear random walks on the torus and show a quantitative equidistribution statement, under the assumption that the Zariski closure of the acting group is semisimple.
In an earlier work, we defined a “generalised Temperley–Lieb algebra” $TL_{r, 1, n}$ corresponding to the imprimitive reflection group G(r, 1, n) as a quotient of the cyclotomic Hecke algebra. In this work we introduce the generalised Temperley–Lieb algebra $TL_{r, p, n}$ which corresponds to the complex reflection group G(r, p, n). Our definition identifies $TL_{r, p, n}$ as the fixed-point subalgebra of $TL_{r, 1, n}$ under a certain automorphism $\sigma$. We prove the cellularity of $TL_{r, p, n}$ by proving that $\sigma$ induces a special shift automorphism with respect to the cellular structure of $TL_{r, 1, n}$. We also give a description of the cell modules of $TL_{r, p, n}$ and their decomposition numbers, and finally we point to how our algebras might be categorified and could lead to a diagrammatic theory.
The space of monic squarefree complex polynomials has a stratification according to the multiplicities of the critical points. We introduce a method to study these strata by way of the infinite-area translation surface associated to the logarithmic derivative $df/f$ of the polynomial. We determine the monodromy of these strata in the braid group, thus describing which braidings of the roots are possible if the orders of the critical points are required to stay fixed. Mirroring the story for holomorphic differentials on higher-genus surfaces, we find the answer is governed by the framing of the punctured disk induced by the horizontal foliation on the translation surface.
We prove that a homomorphism between free groups of finite rank equipped with the bi-invariant word metrics associated with finite generating sets is a quasi-isometry if and only if it is an isomorphism.
The minimal faithful permutation degree $\mu (G)$ of a finite group G is the least integer n such that G is isomorphic to a subgroup of the symmetric group $S_n$. If G has a normal subgroup N such that $\mu (G/N)> \mu (G)$, then G is exceptional. We prove that the proportion of exceptional groups of order $p^6$ for primes $p \geq 5$ is asymptotically zero. We identify $(11p+107)/2$ such groups and conjecture that there are no others.
This paper studies reversibility and transitivity of semigroups acting on homogeneous spaces. Properties of the reversor set of a subsemigroup acting on homogeneous spaces are presented. Let G be a topological group and L a subgroup of G. Assume that S is a subsemigroup of G with nonempty interior. It is presented a study of the reversibility of the S-action on $G/L$ in terms of the actions of S and L on homogeneous spaces of G. The results relate the reversibility and the transitivity of S in $G/L$ with the minimality of the action of L on homogeneous spaces of G. In addition, sufficient conditions for S to be right reversible in G if S is reversible in $G/L$ are presented.
Inspired by work of Szymik and Wahl on the homology of Higman–Thompson groups, we establish a general connection between ample groupoids, topological full groups, algebraic K-theory spectra and infinite loop spaces, based on the construction of small permutative categories of compact open bisections. This allows us to analyse homological invariants of topological full groups in terms of homology for ample groupoids.
Applications include complete rational computations, general vanishing and acyclicity results for group homology of topological full groups as well as a proof of Matui’s AH-conjecture for all minimal, ample groupoids with comparison.
We say that two nonempty subsets A and B with cardinality r of a group G are noncommuting subsets if $xy\neq yx$ for every $x\in A$ and $y\in B$. We say a nonempty set $\mathcal {X}$ of subsets with cardinality r of G is an r-noncommuting set if every two elements of $\mathcal {X}$ are noncommuting subsets. If $|\mathcal {X}| \geq |\mathcal {Y}|$ for any other r-noncommuting set $\mathcal {Y}$ of G, then the cardinality of $\mathcal {X}$ (if it exists) is denoted by $w_G(r)$ and is called the r-clique number of G. In this paper, we try to find the influence of the function $w_G: \mathbb {N} \longrightarrow \mathbb {N}$ on the structure of groups.
We extend a comparison theorem of Anandavardhanan–Borisagar between the quotient of the induction of a mod $p$ character by the image of an Iwahori–Hecke operator and compact induction of a weight to the case of the trivial character. This involves studying the corresponding non-commutative Iwahori–Hecke algebra. We use this to give an Iwahori theoretic reformulation of the (semi-simple) mod $p$ local Langlands correspondence discovered by Breuil and reformulated functorially by Colmez. This version of the correspondence is expected to have applications to computing the mod $p$ reductions of semi-stable Galois representations.
We present a solution to the conjugacy problem in the group of outer automorphisms of $F_3$, a free group of rank 3. We distinguish according to several computable invariants, such as irreducibility, subgroups of polynomial growth and subgroups carrying the attracting lamination. We establish, by considerations on train tracks, that the conjugacy problem is decidable for the outer automorphisms of $F_3$ that preserve a given rank 2 free factor. Then we establish, by consideration on mapping tori, that it is decidable for outer automorphisms of $F_3$ whose maximal polynomial growth subgroups are cyclic. This covers all the cases left by the state of the art.
We give a simplified version of the proofs that, outside of their isolated vertices, the complement of the enhanced power graph and of the power graph are connected and have diameter at most $3$.