To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that a homomorphism between free groups of finite rank equipped with the bi-invariant word metrics associated with finite generating sets is a quasi-isometry if and only if it is an isomorphism.
The minimal faithful permutation degree $\mu (G)$ of a finite group G is the least integer n such that G is isomorphic to a subgroup of the symmetric group $S_n$. If G has a normal subgroup N such that $\mu (G/N)> \mu (G)$, then G is exceptional. We prove that the proportion of exceptional groups of order $p^6$ for primes $p \geq 5$ is asymptotically zero. We identify $(11p+107)/2$ such groups and conjecture that there are no others.
This paper studies reversibility and transitivity of semigroups acting on homogeneous spaces. Properties of the reversor set of a subsemigroup acting on homogeneous spaces are presented. Let G be a topological group and L a subgroup of G. Assume that S is a subsemigroup of G with nonempty interior. It is presented a study of the reversibility of the S-action on $G/L$ in terms of the actions of S and L on homogeneous spaces of G. The results relate the reversibility and the transitivity of S in $G/L$ with the minimality of the action of L on homogeneous spaces of G. In addition, sufficient conditions for S to be right reversible in G if S is reversible in $G/L$ are presented.
Inspired by work of Szymik and Wahl on the homology of Higman–Thompson groups, we establish a general connection between ample groupoids, topological full groups, algebraic K-theory spectra and infinite loop spaces, based on the construction of small permutative categories of compact open bisections. This allows us to analyse homological invariants of topological full groups in terms of homology for ample groupoids.
Applications include complete rational computations, general vanishing and acyclicity results for group homology of topological full groups as well as a proof of Matui’s AH-conjecture for all minimal, ample groupoids with comparison.
We say that two nonempty subsets A and B with cardinality r of a group G are noncommuting subsets if $xy\neq yx$ for every $x\in A$ and $y\in B$. We say a nonempty set $\mathcal {X}$ of subsets with cardinality r of G is an r-noncommuting set if every two elements of $\mathcal {X}$ are noncommuting subsets. If $|\mathcal {X}| \geq |\mathcal {Y}|$ for any other r-noncommuting set $\mathcal {Y}$ of G, then the cardinality of $\mathcal {X}$ (if it exists) is denoted by $w_G(r)$ and is called the r-clique number of G. In this paper, we try to find the influence of the function $w_G: \mathbb {N} \longrightarrow \mathbb {N}$ on the structure of groups.
We extend a comparison theorem of Anandavardhanan–Borisagar between the quotient of the induction of a mod $p$ character by the image of an Iwahori–Hecke operator and compact induction of a weight to the case of the trivial character. This involves studying the corresponding non-commutative Iwahori–Hecke algebra. We use this to give an Iwahori theoretic reformulation of the (semi-simple) mod $p$ local Langlands correspondence discovered by Breuil and reformulated functorially by Colmez. This version of the correspondence is expected to have applications to computing the mod $p$ reductions of semi-stable Galois representations.
We present a solution to the conjugacy problem in the group of outer automorphisms of $F_3$, a free group of rank 3. We distinguish according to several computable invariants, such as irreducibility, subgroups of polynomial growth and subgroups carrying the attracting lamination. We establish, by considerations on train tracks, that the conjugacy problem is decidable for the outer automorphisms of $F_3$ that preserve a given rank 2 free factor. Then we establish, by consideration on mapping tori, that it is decidable for outer automorphisms of $F_3$ whose maximal polynomial growth subgroups are cyclic. This covers all the cases left by the state of the art.
We give a simplified version of the proofs that, outside of their isolated vertices, the complement of the enhanced power graph and of the power graph are connected and have diameter at most $3$.
We determine the cohomology of the closed Drinfeld stratum of p-adic Deligne–Lusztig schemes of Coxeter type attached to arbitrary inner forms of unramified groups over a local non-archimedean field. We prove that the corresponding torus weight spaces are supported in exactly one cohomological degree and are pairwise non-isomorphic irreducible representations of the pro-unipotent radical of the corresponding parahoric subgroup. We also prove that all Moy–Prasad quotients of this stratum are maximal varieties, and we investigate the relation between the resulting representations and Kirillov’s orbit method.
Let ${\mathcal {A}}$ be a unital ${\mathbb {F}}$-algebra and let ${\mathcal {S}}$ be a generating set of ${\mathcal {A}}$. The length of ${\mathcal {S}}$ is the smallest number k such that ${\mathcal {A}}$ equals the ${\mathbb {F}}$-linear span of all products of length at most k of elements from ${\mathcal {S}}$. The length of ${\mathcal {A}}$, denoted by $l({\mathcal {A}})$, is defined to be the maximal length of its generating sets. We show that $l({\mathcal {A}})$ does not exceed the maximum of $\dim {\mathcal {A}} / 2$ and $m({\mathcal {A}})-1$, where $m({\mathcal {A}})$ is the largest degree of the minimal polynomial among all elements of the algebra ${\mathcal {A}}$. As an application, we show that for arbitrary odd n, the length of the group algebra of the dihedral group of order $2n$ equals n.
Stochastic embeddings of finite metric spaces into graph-theoretic trees have proven to be a vital tool for constructing approximation algorithms in theoretical computer science. In the present work, we build out some of the basic theory of stochastic embeddings in the infinite setting with an aim toward applications to Lipschitz free space theory. We prove that proper metric spaces stochastically embedding into $\mathbb {R}$-trees have Lipschitz free spaces isomorphic to $L^1$-spaces. We then undergo a systematic study of stochastic embeddability of Gromov hyperbolic metric spaces into $\mathbb {R}$-trees by way of stochastic embeddability of their boundaries into ultrametric spaces. The following are obtained as our main results: (1) every snowflake of a compact, finite Nagata-dimensional metric space stochastically embeds into an ultrametric space and has Lipschitz free space isomorphic to $\ell ^1$, (2) the Lipschitz free space over hyperbolic n-space is isomorphic to the Lipschitz free space over Euclidean n-space and (3) every infinite, finitely generated hyperbolic group stochastically embeds into an $\mathbb {R}$-tree, has Lipschitz free space isomorphic to $\ell ^1$, and admits a proper, uniformly Lipschitz affine action on $\ell ^1$.
We geometrize the mod p Satake isomorphism of Herzig and Henniart–Vignéras using Witt vector affine flag varieties for reductive groups in mixed characteristic. We deduce this as a special case of a formula, stated in terms of the geometry of generalized Mirković–Vilonen cycles, for the Satake transform of an arbitrary parahoric mod p Hecke algebra with respect to an arbitrary Levi subgroup. Moreover, we prove an explicit formula for the convolution product in an arbitrary parahoric mod p Hecke algebra. Our methods involve the constant term functors inspired from the geometric Langlands program, and we also treat the case of reductive groups in equal characteristic. We expect this to be a first step toward a geometrization of a mod p Local Langlands Correspondence.
Let Γ be a finite graph and let $A(\Gamma)$ be the corresponding right-angled Artin group. From an arbitrary basis $\mathcal B$ of $H^1(A(\Gamma),\mathbb F)$ over an arbitrary field, we construct a natural graph $\Gamma_{\mathcal B}$ from the cup product, called the cohomology basis graph. We show that $\Gamma_{\mathcal B}$ always contains Γ as a subgraph. This provides an effective way to reconstruct the defining graph Γ from the cohomology of $A(\Gamma)$, to characterize the planarity of the defining graph from the algebra of $A(\Gamma)$ and to recover many other natural graph-theoretic invariants. We also investigate the behaviour of the cohomology basis graph under passage to elementary subminors and show that it is not well-behaved under edge contraction.
A complete description of all possible multiplicative groups of finite skew left braces whose additive group has trivial centre is given. As a consequence, some earlier results of Tsang can be improved and an answer to an open question set by Tsang at Ischia Group Theory 2024 Conference is provided.
The notion of a strongly dense subgroup was introduced by Breuillard, Green, Guralnick and Tao: a subgroup Γ of a semi-simple $\mathbb{Q}$ algebraic group $\mathcal{G}$ is called strongly dense if every pair of non-commuting elements generate a Zariski dense subgroup. Amongst other things, Breuillard et al. prove that there exist strongly dense free subgroups in $\mathcal{G}({\mathbb{R}})$ and ask whether or not a Zariski dense subgroup of $\mathcal{G}(\mathbb{R})$ always contains a strongly dense free subgroup. In this paper, we answer this for many surface subgroups of $\textrm{SL}(3,\mathbb{R})$.
Let G be an almost simple group with socle $G_0$. In this paper we prove that whenever $G/G_0$ is abelian, then there exists an abelian subgroup A of G such that $G=AG_0$. We propose a few applications of this structural property of almost simple groups.
Let $(W,S)$ be a Coxeter system, and write $S=\{s_i:i\in I\}$, where I is a finite index set. Fix a nonempty convex subset $\mathscr {L}$ of W. If W is of type A, then $\mathscr {L}$ is the set of linear extensions of a poset, and there are important Bender–Knuth involutions$\mathrm {BK}_i\colon \mathscr {L}\to \mathscr {L}$ indexed by elements of I. For arbitrary W and for each $i\in I$, we introduce an operator $\tau _i\colon W\to W$ (depending on $\mathscr {L}$) that we call a noninvertible Bender–Knuth toggle; this operator restricts to an involution on $\mathscr {L}$ that coincides with $\mathrm {BK}_i$ in type A. Given a Coxeter element $c=s_{i_n}\cdots s_{i_1}$, we consider the operator $\mathrm {Pro}_c=\tau _{i_n}\cdots \tau _{i_1}$. We say W is futuristic if for every nonempty finite convex set $\mathscr {L}$, every Coxeter element c and every $u\in W$, there exists an integer $K\geq 0$ such that $\mathrm {Pro}_c^K(u)\in \mathscr {L}$. We prove that finite Coxeter groups, right-angled Coxeter groups, rank-3 Coxeter groups, affine Coxeter groups of types $\widetilde A$ and $\widetilde C$, and Coxeter groups whose Coxeter graphs are complete are all futuristic. When W is finite, we actually prove that if $s_{i_N}\cdots s_{i_1}$ is a reduced expression for the long element of W, then $\tau _{i_N}\cdots \tau _{i_1}(W)=\mathscr {L}$; this allows us to determine the smallest integer $\mathrm {M}(c)$ such that $\mathrm {Pro}_c^{{\mathrm {M}}(c)}(W)=\mathscr {L}$ for all $\mathscr {L}$. We also exhibit infinitely many non-futuristic Coxeter groups, including all irreducible affine Coxeter groups that are not of type $\widetilde A$, $\widetilde C$, or $\widetilde G_2$.
Let $G$ be a group. The notion of linear sofic approximations of $G$ over an arbitrary field $F$ was introduced and systematically studied by Arzhantseva and Păunescu [3]. Inspired by one of the results of [3], we introduce and study the invariant $\kappa _F(G)$ that captures the quality of linear sofic approximations of $G$ over $F$. In this work, we show that when $F$ has characteristic zero and $G$ is linear sofic over $F$, then $\kappa _F(G)$ takes values in the interval $[1/2,1]$ and $1/2$ cannot be replaced by any larger value. Further, we show that under the same conditions, $\kappa _F(G)=1$ when $G$ is torsion-free. These results answer a question posed by Arzhantseva and Păunescu [3] for fields of characteristic zero. One of the new ingredients of our proofs is an effective non-concentration estimates for random walks on finitely generated abelian groups, which may be of independent interest.
In this article, $\mathcal{F}_{S}(G)$ denotes the fusion category of G on a Sylow p-subgroup S of G where p denotes a prime. A subgroup K of G has normal complement in G if there is a normal subgroup T of G satisfying that G = KT and $T \cap K = 1$. We investigate the supersolvability of $\mathcal{F}_{S}(G)$ under the assumption that some subgroups of S are normal in G or have normal complement in G.
Let C be a curve defined over a number field K and write g for the genus of C and J for the Jacobian of C. Let $n \ge 2$. We say that an algebraic point $P \in C(\overline {K})$ has degree n if the extension $K(P)/K$ has degree n. By the Galois group of P we mean the Galois group of the Galois closure of $K(P)/K$ which we identify as a transitive subgroup of $S_n$. We say that P is primitive if its Galois group is primitive as a subgroup of $S_n$. We prove the following ‘single source’ theorem for primitive points. Suppose $g>(n-1)^2$ if $n \ge 3$ and $g \ge 3$ if $n=2$. Suppose that either J is simple or that $J(K)$ is finite. Suppose C has infinitely many primitive degree n points. Then there is a degree n morphism $\varphi : C \rightarrow \mathbb {P}^1$ such that all but finitely many primitive degree n points correspond to fibres $\varphi ^{-1}(\alpha )$ with $\alpha \in \mathbb {P}^1(K)$.
We prove, moreover, under the same hypotheses, that if C has infinitely many degree n points with Galois group $S_n$ or $A_n$, then C has only finitely many degree n points of any other primitive Galois group.