To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let G be a finite group. A subgroup A of G is said to be S-permutable in G if A permutes with every Sylow subgroup P of G, that is, $AP=PA$. Let $A_{sG}$ be the subgroup of A generated by all S-permutable subgroups of G contained in A and $A^{sG}$ be the intersection of all S-permutable subgroups of G containing A. We prove that if G is a soluble group, then S-permutability is a transitive relation in G if and only if the nilpotent residual $G^{\mathfrak {N}}$ of G avoids the pair $(A^{s G}, A_{sG})$, that is, $G^{\mathfrak {N}}\cap A^{sG}= G^{\mathfrak {N}}\cap A_{sG}$ for every subnormal subgroup A of G.
In this note, we present examples of non-quasi-geodesic metric spaces which are hyperbolic (i.e., satisfying Gromov’s $4$-point condition) while the intersection of any two metric balls therein does not either ‘look like’ a ball or has uniformly bounded eccentricity. This answers an open question posed by Chatterji and Niblo.
We prove that, for any countable acylindrically hyperbolic group G, there exists a generating set S of G such that the corresponding Cayley graph $\Gamma (G,S)$ is hyperbolic, $|\partial \Gamma (G,S)|>2$, the natural action of G on $\Gamma (G,S)$ is acylindrical and the natural action of G on the Gromov boundary $\partial \Gamma (G,S)$ is hyperfinite. This result broadens the class of groups that admit a non-elementary acylindrical action on a hyperbolic space with a hyperfinite boundary action.
We classify the irreducible unitary representations of closed simple groups of automorphisms of trees acting $2$-transitively on the boundary and whose local action at every vertex contains the alternating group. As an application, we confirm Claudio Nebbia’s CCR conjecture on trees for $(d_0,d_1)$-semi-regular trees such that $d_0,d_1\in \Theta $, where $\Theta $ is an asymptotically dense set of positive integers.
We propose generating functions, $\textrm {RGF}_p(x)$, for the quotients of numerical semigroups which are related to the Sylvester denumerant. Using MacMahon’s partition analysis, we can obtain $\textrm {RGF}_p(x)$ by extracting the constant term of a rational function. We use $\textrm {RGF}_p(x)$ to give a system of generators for the quotient of the numerical semigroup $\langle a_1,a_2,a_3\rangle $ by p for a small positive integer p, and we characterise the generators of ${\langle A\rangle }/{p}$ for a general numerical semigroup A and any positive integer p.
Let $\alpha $ be a complex-valued $2$-cocycle of a finite group G with $\alpha $ chosen so that the $\alpha $-characters of G are class functions and analogues of the orthogonality relations for ordinary characters are valid. Then the real or rational elements of G that are also $\alpha $-regular are characterised by the values that the irreducible $\alpha $-characters of G take on those respective elements. These new results generalise two known facts concerning such elements and irreducible ordinary characters of $G;$ however, the initial choice of $\alpha $ from its cohomology class is not unique in general and it is shown the results can vary for a different choice.
A set of complex numbers $S$ is called invariant if it is closed under addition and multiplication, namely, for any $x, y \in S$ we have $x+y \in S$ and $xy \in S$. For each $s \in {\mathbb {C}}$ the smallest invariant set ${\mathbb {N}}[s]$ containing $s$ consists of all possible sums $\sum _{i \in I} a_i s^i$, where $I$ runs over all finite nonempty subsets of the set of positive integers ${\mathbb {N}}$ and $a_i \in {\mathbb {N}}$ for each $i \in I$. In this paper, we prove that for $s \in {\mathbb {C}}$ the set ${\mathbb {N}}[s]$ is everywhere dense in ${\mathbb {C}}$ if and only if $s \notin {\mathbb {R}}$ and $s$ is not a quadratic algebraic integer. More precisely, we show that if $s \in {\mathbb {C}} \setminus {\mathbb {R}}$ is a transcendental number, then there is a positive integer $n$ such that the sumset ${\mathbb {N}} t^n+{\mathbb {N}} t^{2n} +{\mathbb {N}} t^{3n}$ is everywhere dense in ${\mathbb {C}}$ for either $t=s$ or $t=s+s^2$. Similarly, if $s \in {\mathbb {C}} \setminus {\mathbb {R}}$ is an algebraic number of degree $d \ne 2, 4$, then there are positive integers $n, m$ such that the sumset ${\mathbb {N}} t^n+{\mathbb {N}} t^{2n} +{\mathbb {N}} t^{3n}$ is everywhere dense in ${\mathbb {C}}$ for $t=ms+s^2$. For quadratic and some special quartic algebraic numbers $s$ it is shown that a similar sumset of three sets cannot be dense. In each of these two cases the density of ${\mathbb {N}}[s]$ in ${\mathbb {C}}$ is established by a different method: for those special quartic numbers, it is possible to take a sumset of four sets.
The complete classification of the finite simple groups that are $(2,3)$-generated is a problem which is still open only for orthogonal groups. Here, we construct $(2, 3)$-generators for the finite odd-dimensional orthogonal groups $\Omega _{2k+1}(q)$, $k\geq 4$. As a byproduct, we also obtain $(2,3)$-generators for $\Omega _{4k}^+(q)$ with $k\geq 3$ and q odd, and for $\Omega _{4k+2}^\pm (q)$ with $k\geq 4$ and $q\equiv \pm 1~ \mathrm {(mod~ 4)}$.
We define a notion of modular forms of half-integral weight on the quaternionic exceptional groups. We prove that they have a well-behaved notion of Fourier coefficients, which are complex numbers defined up to multiplication by ${\pm }1$. We analyze the minimal modular form $\Theta _{F_4}$ on the double cover of $F_4$, following Loke–Savin and Ginzburg. Using $\Theta _{F_4}$, we define a modular form of weight $\tfrac {1}{2}$ on (the double cover of) $G_2$. We prove that the Fourier coefficients of this modular form on $G_2$ see the $2$-torsion in the narrow class groups of totally real cubic fields.
We initiate a systematic study of the perfection of affine group schemes of finite type over fields of positive characteristic. The main result intrinsically characterises and classifies the perfections of reductive groups and obtains a bijection with the set of classifying spaces of compact connected Lie groups topologically localised away from the characteristic. We also study the representations of perfectly reductive groups. We establish a highest weight classification of simple modules, the decomposition into blocks, and relate extension groups to those of the underlying abstract group.
In this article, we explore the problem of determining isomorphisms between the twisted complex group algebras of finite $p$-groups. This problem bears similarity to the classical group algebra isomorphism problem and has been recently examined by Margolis-Schnabel. Our focus lies on a specific invariant, referred to as the generalized corank, which relates to the twisted complex group algebra isomorphism problem. We provide a solution for non-abelian $p$-groups with generalized corank at most three.
We construct an unfolding path in Outer space which does not converge in the boundary, and instead it accumulates on the entire 1-simplex of projectivized length measures on a nongeometric arational ${\mathbb R}$-tree T. We also show that T admits exactly two dual ergodic projective currents. This is the first nongeometric example of an arational tree that is neither uniquely ergodic nor uniquely ergometric.
Given an affine Coxeter group W, the corresponding Shi arrangement is a refinement of the corresponding Coxeter hyperplane arrangements that was introduced by Shi to study Kazhdan–Lusztig cells for W. Shi showed that each region of the Shi arrangement contains exactly one element of minimal length in W. Low elements in W were introduced to study the word problem of the corresponding Artin–Tits (braid) group and turns out to produce automata to study the combinatorics of reduced words in W. In this article, we show, in the case of an affine Coxeter group, that the set of minimal length elements of the regions in the Shi arrangement is precisely the set of low elements, settling a conjecture of Dyer and the second author in this case. As a by-product of our proof, we show that the descent walls – the walls that separate a region from the fundamental alcove – of any region in the Shi arrangement are precisely the descent walls of the alcove of its corresponding low element.
Let $F$ be a separable integral binary form of odd degree $N \geq 5$. A result of Darmon and Granville known as ‘Faltings plus epsilon’ implies that the degree-$N$superelliptic equation$y^2 = F(x,z)$ has finitely many primitive integer solutions. In this paper, we consider the family $\mathscr {F}_N(f_0)$ of degree-$N$ superelliptic equations with fixed leading coefficient $f_0 \in \mathbb {Z} \smallsetminus \pm \mathbb {Z}^2$, ordered by height. For every sufficiently large $N$, we prove that among equations in the family $\mathscr {F}_N(f_0)$, more than $74.9\,\%$ are insoluble, and more than $71.8\,\%$ are everywhere locally soluble but fail the Hasse principle due to the Brauer–Manin obstruction. We further show that these proportions rise to at least $99.9\,\%$ and $96.7\,\%$, respectively, when $f_0$ has sufficiently many prime divisors of odd multiplicity. Our result can be viewed as a strong asymptotic form of ‘Faltings plus epsilon’ for superelliptic equations and constitutes an analogue of Bhargava's result that most hyperelliptic curves over $\mathbb {Q}$ have no rational points.
Let $\Gamma =\langle I_{1}, I_{2}, I_{3}\rangle $ be the complex hyperbolic $(4,4,\infty )$ triangle group with $I_1I_3I_2I_3$ being unipotent. We show that the limit set of $\Gamma $ is connected and the closure of a countable union of $\mathbb {R}$-circles.
We develop a theory of parabolic induction and restriction functors relating modules over Coulomb branch algebras, in the sense of Braverman-Finkelberg-Nakajima. Our functors generalize Bezrukavnikov-Etingof’s induction and restriction functors for Cherednik algebras, but their definition uses different tools.
After this general definition, we focus on quiver gauge theories attached to a quiver $\Gamma $. The induction and restriction functors allow us to define a categorical action of the corresponding symmetric Kac-Moody algebra $\mathfrak {g}_{\Gamma }$ on category $ \mathcal {O}$ for these Coulomb branch algebras. When $ \Gamma $ is of Dynkin type, the Coulomb branch algebras are truncated shifted Yangians and quantize generalized affine Grassmannian slices. Thus, we regard our action as a categorification of the geometric Satake correspondence.
To establish this categorical action, we define a new class of ‘flavoured’ KLRW algebras, which are similar to the diagrammatic algebras originally constructed by the second author for the purpose of tensor product categorification. We prove an equivalence between the category of Gelfand-Tsetlin modules over a Coulomb branch algebra and the modules over a flavoured KLRW algebra. This equivalence relates the categorical action by induction and restriction functors to the usual categorical action on modules over a KLRW algebra.
A group $G=AB$ is the weakly mutually permutable product of the subgroups A and B, if A permutes with every subgroup of B containing $A \cap B$ and B permutes with every subgroup of A containing $A \cap B$. Weakly mutually permutable products were introduced by the first, second and fourth authors [‘Generalised mutually permutable products and saturated formations’, J. Algebra595 (2022), 434–443] who showed that if $G'$ is nilpotent, A permutes with every Sylow subgroup of B and B permutes with every Sylow subgroup of A, then $G^{\mathfrak {F}}=A^{\mathfrak {F}}B^{\mathfrak {F}} $, where $ \mathfrak {F} $ is a saturated formation containing $ \mathfrak {U} $, the class of supersoluble groups. In this article we prove results on weakly mutually permutable products concerning $ \mathfrak {F} $-residuals, $ \mathfrak {F} $-projectors and $\mathfrak {F}$-normalisers. As an application of some of our arguments, we unify some results on weakly mutually $sn$-products.
Brazil et al. [‘Maximal subgroups of infinite symmetric groups’, Proc. Lond. Math. Soc. (3)68(1) (1994), 77–111] provided a new family of maximal subgroups of the symmetric group $G(X)$ defined on an infinite set X. It is easy to see that, in this case, $G(X)$ contains subsemigroups that are not groups, but nothing is known about nongroup maximal subsemigroups of $G(X)$. We provide infinitely many examples of such semigroups.