We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let G be a permutation group on a finite set $\Omega $. The base size of G is the minimal size of a subset of $\Omega $ with trivial pointwise stabiliser in G. In this paper, we extend earlier work of Fawcett by determining the precise base size of every finite primitive permutation group of diagonal type. In particular, this is the first family of primitive groups arising in the O’Nan–Scott theorem for which the exact base size has been computed in all cases. Our methods also allow us to determine all the primitive groups of diagonal type with a unique regular suborbit.
We discuss a variant, named ‘Rattle’, of the product replacement algorithm. Rattle is a Markov chain, that returns a random element of a black box group. The limiting distribution of the element returned is the uniform distribution. We prove that, if the generating sequence is long enough, the probability distribution of the element returned converges unexpectedly quickly to the uniform distribution.
Suppose that G is a finite solvable group. Let $t=n_c(G)$ denote the number of orders of nonnormal subgroups of G. We bound the derived length $dl(G)$ in terms of $n_c(G)$. If G is a finite p-group, we show that $|G'|\leq p^{2t+1}$ and $dl(G)\leq \lceil \log _2(2t+3)\rceil $. If G is a finite solvable nonnilpotent group, we prove that the sum of the powers of the prime divisors of $|G'|$ is less than t and that $dl(G)\leq \lfloor 2(t+1)/3\rfloor +1$.
We prove that, given a finitely generated subgroup H of a free group F, the following questions are decidable: is H closed (dense) in F for the pro-(met)abelian topology? Is the closure of H in F for the pro-(met)abelian topology finitely generated? We show also that if the latter question has a positive answer, then we can effectively construct a basis for the closure, and the closure has decidable membership problem in any case. Moreover, it is decidable whether H is closed for the pro-$\mathbf {V}$ topology when $\mathbf {V}$ is an equational pseudovariety of finite groups, such as the pseudovariety $\mathbf {S}_k$ of all finite solvable groups with derived length $\leq k$. We also connect the pro-abelian topology with the topologies defined by abelian groups of bounded exponent.
We prove some conditions for higher-dimensional algebraic fibering of pro-p group extensions, and we establish corollaries about incoherence of pro-p groups. In particular, if $1 \to K \to G \to \Gamma \to 1$ is a short exact sequence of pro-p groups, such that $\Gamma $ contains a finitely generated, non-abelian, free pro-p subgroup, K a finitely presented pro-p group with N a normal pro-p subgroup of K such that $K/ N \simeq \mathbb {Z}_p$ and N not finitely generated as a pro-p group, then G is incoherent (in the category of pro-p groups). Furthermore, we show that if K is a finitely generated, free pro-p group with $d(K) \geq 2$, then either $\mathrm{Aut}_0(K)$ is incoherent (in the category of pro-p groups) or there is a finitely presented pro-p group, without non-procyclic free pro-p subgroups, that has a metabelian pro-p quotient that is not finitely presented, i.e., a pro-p version of a result of Bieri–Strebel does not hold.
Graph products of cyclic groups and Coxeter groups are two families of groups that are defined by labelled graphs. The family of Dyer groups contains these both families and gives us a framework to study these groups in a unified way. This paper focuses on the spherical growth series of a Dyer group D with respect to the standard generating set. We give a recursive formula for the spherical growth series of D in terms of the spherical growth series of standard parabolic subgroups. As an application we obtain the rationality of the spherical growth series of a Dyer group. Furthermore, we show that the spherical growth series of D is closely related to the Euler characteristic of D.
For any branched double covering of compact Riemann surfaces, we consider the associated character varieties that are unitary in the global sense, which we call $\operatorname {\mathrm {GL}}_n\rtimes \!<\!\sigma {>}$-character varieties. We restrict the monodromies around the branch points to generic semi-simple conjugacy classes contained in $\operatorname {\mathrm {GL}}_n\sigma $ and compute the E-polynomials of these character varieties using the character table of $\operatorname {\mathrm {GL}}_n(q)\rtimes \!<\!\sigma \!>\!$. The result is expressed as the inner product of certain symmetric functions associated to the wreath product $(\mathbb {Z}/2\mathbb {Z})^N\rtimes \mathfrak {S}_N$. We are then led to a conjectural formula for the mixed Hodge polynomial, which involves (modified) Macdonald polynomials and wreath Macdonald polynomials.
A notion of normal submonoid of a monoid M is introduced that generalizes the normal subgroups of a group. When ordered by inclusion, the set $\mathsf {NorSub}(M)$ of normal submonoids of M is a complete lattice. Joins are explicitly described and the lattice is computed for the finite full transformation monoids $T_n$, $n\geq ~1$. It is also shown that $\mathsf {NorSub}(M)$ is modular for a specific family of commutative monoids, including all Krull monoids, and that it, as a join semilattice, embeds isomorphically onto a join subsemilattice of the lattice $\mathsf {Cong}(M)$ of congruences on M. This leads to a new strategy for computing $\mathsf {Cong}(M)$ consisting of computing $\mathsf {NorSub}(M)$ and the so-called unital congruences on the quotients of M modulo its normal submonoids. This provides a new perspective on Malcev’s computation of the congruences on $T_n$.
For a post-critically finite branched covering of the sphere that is a subdivision map of a finite subdivision rule, we define non-expanding spines which determine the existence of a Levy cycle in a non-exhaustive semi-decidable algorithm. Especially when a finite subdivision rule has polynomial growth of edge subdivisions, the algorithm terminates very quickly, and the existence of a Levy cycle is equivalent to the existence of a Thurston obstruction. To show the equivalence between Levy and Thurston obstructions, we generalize the arcs intersecting obstruction theorem by Pilgrim and Tan [Combining rational maps and controlling obstructions. Ergod. Th. & Dynam. Sys.18(1) (1998), 221–245] to a graph intersecting obstruction theorem. As a corollary, we prove that for a pair of post-critically finite polynomials, if at least one polynomial has core entropy zero, then their mating has a Levy cycle if and only if the mating has a Thurston obstruction.
Quaternionic automorphic representations are one attempt to generalize to other groups the special place holomorphic modular forms have among automorphic representations of $\mathrm {GL}_2$. Here, we use ‘hyperendoscopy’ techniques to develop a general trace formula and understand them on an arbitrary group. Then we specialize this general formula to study quaternionic automorphic representations on the exceptional group $G_2$, eventually getting an analog of the Eichler–Selberg trace formula for classical modular forms. We finally use this together with some techniques of Chenevier, Renard and Taïbi to compute dimensions of spaces of level-$1$ quaternionic representations. On the way, we prove a Jacquet–Langlands-style result describing them in terms of classical modular forms and automorphic representations on the compact-at-infinity form $G_2^c$.
The main technical difficulty is that the quaternionic discrete series that quaternionic automorphic representations are defined in terms of do not satisfy a condition of being ‘regular’. A real representation theory argument shows that regularity miraculously does not matter for specifically the case of quaternionic discrete series.
We hope that the techniques and shortcuts highlighted in this project are of interest in other computations about discrete-at-infinity automorphic representations on arbitrary reductive groups instead of just classical ones.
The complex algebra of an inverse semigroup with finitely many idempotents in each $\mathcal D$-class is stably finite by a result of Munn. This can be proved fairly easily using $C^{*}$-algebras for inverse semigroups satisfying this condition that have a Hausdorff universal groupoid, or more generally for direct limits of inverse semigroups satisfying this condition and having Hausdorff universal groupoids. It is not difficult to see that a finitely presented inverse semigroup with a non-Hausdorff universal groupoid cannot be a direct limit of inverse semigroups with Hausdorff universal groupoids. We construct here countably many nonisomorphic finitely presented inverse semigroups with finitely many idempotents in each $\mathcal D$-class and non-Hausdorff universal groupoids. At this time, there is not a clear $C^{*}$-algebraic technique to prove these inverse semigroups have stably finite complex algebras.
We study the zero-sharing behavior among irreducible characters of a finite group. For symmetric groups $\mathsf {S}_n$, it is proved that, with one exception, any two irreducible characters have at least one common zero. To further explore this phenomenon, we introduce the common-zero graph of a finite group G, with nonlinear irreducible characters of G as vertices, and edges connecting characters that vanish on some common group element. We show that for solvable and simple groups, the number of connected components of this graph is bounded above by three. Lastly, the result for $\mathsf {S}_n$ is applied to prove the nonequivalence of the metrics on permutations induced from faithful irreducible characters of the group.
We solve a fundamental question posed in Frohardt’s 1988 paper [6] on finite $2$-groups with Kantor familes, by showing that finite groups K with a Kantor family $(\mathcal {F},\mathcal {F}^*)$ having distinct members $A, B \in \mathcal {F}$ such that $A^* \cap B^*$ is a central subgroup of K and the quotient $K/(A^* \cap B^*)$ is abelian cannot exist if the center of K has exponent $4$ and the members of $\mathcal {F}$ are elementary abelian. Then we give a short geometrical proof of a recent result of Ott which says that finite skew translation quadrangles of even order $(t,t)$ (where t is not a square) are always translation generalized quadrangles. This is a consequence of a complete classification of finite cyclic skew translation quadrangles of order $(t,t)$ that we carry out in the present paper.
We study conjugacy classes of germs of nonflat diffeomorphisms of the real line fixing the origin. Based on the work of Takens and Yoccoz, we establish results that are sharp in terms of differentiability classes and order of tangency to the identity. The core of all of this lies in the invariance of residues under low-regular conjugacies. This may be seen as an extension of the fact (also proved in this article) that the value of the Schwarzian derivative at the origin for germs of $C^3$ parabolic diffeomorphisms is invariant under $C^2$ parabolic conjugacy, though it may vary arbitrarily under parabolic $C^1$ conjugacy.
Let $\mathbb F$ be a finite field of odd order and $a,b\in\mathbb F\setminus\{0,1\}$ be such that $\chi(a) = \chi(b)$ and $\chi(1-a)=\chi(1-b)$, where χ is the extended quadratic character on $\mathbb F$. Let $Q_{a,b}$ be the quasigroup over $\mathbb F$ defined by $(x,y)\mapsto x+a(y-x)$ if $\chi(y-x) \geqslant 0$, and $(x,y)\mapsto x+b(y-x)$ if $\chi(y-x) = -1$. We show that $Q_{a,b} \cong Q_{c,d}$ if and only if $\{a,b\}= \{\alpha(c),\alpha(d)\}$ for some $\alpha\in \operatorname{Aut}(\mathbb F)$. We also characterize $\operatorname{Aut}(Q_{a,b})$ and exhibit further properties, including establishing when $Q_{a,b}$ is a Steiner quasigroup or is commutative, entropic, left or right distributive, flexible or semisymmetric. In proving our results, we also characterize the minimal subquasigroups of $Q_{a,b}$.
We investigate the groups of units of one-relator and special inverse monoids. These are inverse monoids which are defined by presentations, where all the defining relations are of the form $r=1$. We develop new approaches for finding presentations for the group of units of a special inverse monoid, and apply these methods to give conditions under which the group admits a presentation with the same number of defining relations as the monoid. In particular, our results give sufficient conditions for the group of units of a one-relator inverse monoid to be a one-relator group. When these conditions are satisfied, these results give inverse semigroup theoretic analogues of classical results of Adjan for one-relator monoids, and Makanin for special monoids. In contrast, we show that in general these classical results do not hold for one-relator and special inverse monoids. In particular, we show that there exists a one-relator special inverse monoid whose group of units is not a one-relator group (with respect to any generating set), and we show that there exists a finitely presented special inverse monoid whose group of units is not finitely presented.
We introduce and study the model-theoretic notions of absolute connectedness and type-absolute connectedness for groups. We prove that groups of rational points of split semisimple linear groups (that is, Chevalley groups) over arbitrary infinite fields are absolutely connected and characterize connected Lie groups which are type-absolutely connected. We prove that the class of type-absolutely connected group is exactly the class of discretely topologized groups with the trivial Bohr compactification, that is, the class of minimally almost periodic groups.
An element g in a group G is called reversible if g is conjugate to g−1 in G. An element g in G is strongly reversible if g is conjugate to g−1 by an involution in G. The group of affine transformations of $\mathbb D^n$ may be identified with the semi-direct product $\mathrm{GL}(n, \mathbb D) \ltimes \mathbb D^n $, where $\mathbb D:=\mathbb R, \mathbb C$ or $ \mathbb H $. This paper classifies reversible and strongly reversible elements in the affine group $\mathrm{GL}(n, \mathbb D) \ltimes \mathbb D^n $.
We prove analogues of Schur’s lemma for endomorphisms of extensions in Tannakian categories. More precisely, let $\mathbf {T}$ be a neutral Tannakian category over a field of characteristic zero. Let E be an extension of A by B in $\mathbf {T}$. We consider conditions under which every endomorphism of E that stabilises B induces a scalar map on $A\oplus B$. We give a result in this direction in the general setting of arbitrary $\mathbf {T}$ and E, and then a stronger result when $\mathbf {T}$ is filtered and the associated graded objects to A and B satisfy some conditions. We also discuss the sharpness of the results.