We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The completions of certain nilpotent groups with respect to some ascending sequences of integral domains are constructed. These completions are generalizations of Lazard completions for the groups under consideration and they are Lie algebras over the first integral domain in the sequence. The construction is possible in particular for finite p-groups of exponent p and class < p.
Let k be an algebraically closed field of characteristic p, and G a finite group. Let M be an indecomposable kG-module with vertex V and source X, and let P be a Sylow p-subgroup of G containing V. Theorem: If dimkX is prime to p and if NG(V) is p-solvable, then the p-part of dimkM equals [P:V]; dimkX is prime to p if V is cyclic.
Let G/G' be finitely generated and let G = B1 x A1 = B2 x A2 = … = Bi x Ai = … with each Bi isomorphic to a fixed group B which obeys the maximal condition for normal subgroups. Then the Ai represent only finitely many isomorphism classes. We give an example with B infinite cyclic, G/G' free abelian of infinite (countable) rank and such that G is decomposed as above with no two Ai isomorphic.
In this paper we generalize a recent result of Freedman (1973) concerning the cardinality of the type set of a rank two torsion-free abelian group. We show that if A is such a group and A supports a non-trivial associative ring then the type set of A contains at most three elements.
Commutative idempotent quasigroups with a sharply transitive automorphism group G are described in terms of so-called Room maps of G. Orthogonal Room maps and skew Room maps are used to construct Room squares and skew Room squares. Very general direct and recursive constructions for skew Room maps lead to the existence of skew Room maps of groups of order prime to 30. Also some nonexistence results are proved.
Lyndon's axiomatic methods are used in [1] to show, among other things, that a group G with an integer valued length function satisfying certain conditions is free. At the end of his paper [2] Lyndon gives a method of embedding such a group in a free group whose natural length function extends the function on G. We construct here a simpler embedding with the same property.
Let g be a connected reductive linear algebraic group, and let G = gσ be the finite subgroup of fixed points, where σ is the generalized Frobenius endomorphism of g. Let x be a regular semisimple element of G and let w be a corresponding element of the Weyl group W. In this paper we give a formula for the number of right cosets of a parabolic subgroup of G left fixed by x, in terms of the corresponding action of w in W. In case G is untwisted, it turns out thta x fixes exactly as many cosets as does W in the corresponding permutation representation.
The free product of two Hopfian groups (in the category of groups) need not be Hopfian. We prove, by elementary methods, that the free product of two simple Hopfian inverse semigroups is Hopfian. In particular the free product of any two Hopfian groups, in the category of inverse semigroups, is again Hopfian. In fact the same is true in the category of all semigroups.
The conjugacy of Cartan subalgebras of a Lie algebra L over an algebraically closed field under the connected automorphism group G of L is inherited by those G-stable ideals B for which B/Ci is restrictable for some hypercenter Ci of B. Concequently, if L is a restrictable Lie algebra such that L/Ci restrictable for some hypercenter Ci of L, and if the Lie algebra of Aut L contains ad L, then the Cartan subalgebras of L are conjugate under G. (The techniques here apply in particular to Lie algebras of characteristic 0 and classical Lie algebras, showing how the conjugacy of Cartan subgroups of algebraic groups leads quickly in these cases to the conjugacy of Cartan subalgebras.)
Let G be a finite and u(G) the group of all invertible transformations (polynomial permutations) of the form x→a1 x1→ xk a2⃛ar xkr ar+1 (aiε G, x runs through G). Continuing investigations of H. Lausch of groups satisfying u(G) = {X→axk b} we show here that this condition implies that G is the direct product of its {2, 3}-Hall subgroup and its {2, 3}′-Hall subgroup H where H is nilpoint of class ≤2. Essentially all non-nilpoint groups G of order 2m 3n are described having the property u(G)= {x→axk b}
Let A be a finite dimensional algebra over a field F. Let R and S be biregular algebras over F such that 1R ∈ R and 1S ∈ S. We show that if R/P≃A≃ S/M for each primitive ideal P in A and each primitive ideal M in S then End FR≃ End S implies R≃S.
In conjunction with an earlier work by Leong (1974a), this paper completes the solution of the isomorphism problem for finite nilpotent groups of class two with cyclic centre. A canonical decomposition for 2-groups of such type is obtained and proved.
A ring R is called an l-ring (r-ring) in case R contains an indentity and every left (right) semigroup ideal is a left (right) ring ideal. A number of structure theorems are obtained for l-rings when R is left noetherian and left artinian. It is shown that left noetherian l-rings are local left principal ideal rings. When R is a finite dimensional algebra over a field, the property of being an l-ring is equivalent to being an r-ring. However, examples are given to show that these two concepts are in general not equivalent even in the artinian case.
For any group S let Ab(S) = {A∣A is an abelian subgroup of S of maximal order}. Let G be a Chevalley group of type An, Bn, Cn, or Dn over a finite field of characteristic p and let. In this paper Ab(U) is determined for all such groups.
A cohomology theory for locally trivial, locally compact topological groupoids with coefficients in vector bundles is constructed, generalizing constructions of Hochschild and Mostow (1962) for topological groups and Higgins (1971) for discrete groupoids. It is calculated to be naturally isomorphic to the cohomology of the vertex groups, and is thus independent of the twistedness of the groupoid. The second cohomology space is accordingly realized as those “rigid” extensions which essentially arise from extensions of the vertex group; the cohomological machinery now yields the unexpected result that in fact all extensions, satisfying some natural weak conditions, are rigid.
We show that rings for which every non-constant multiplicative endomorphism is additive are trivial or power rings (that is, rings R such that R = R2 and x2 = 0 = x+x for all x ∈ R) and that if R is a power ring for which every multiplicative endomorphism is additive, then End (R) is a zero semigroup or a semilattice according to how the product is defined.
We discuss generalizations of the Lie-Kolchin-Mal'cev theorem. For example we show that if G is a soluble linear group of degree n, then G contains a triangularizable subgroup T whose index in G is bounded by function of n only and such that T is normalized by every automorphism of G normalizing G0, the Zariski connected component of G containing the identity. We also prove that in certain situations at least the index of G0 in G can be bounded in terms of the degree and the ground field.
Groups with the property of the title were considered by Chillag (1977); this paper completes his results by showing that, with known exceptions, they are triply transitive.