To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The main results are as follows. A finitely generated soluble group G is polycyclic if and only if every infinite set of elements of G contains a pair generating a polycyclic subgroup; and the same result with “polycyclic” replaced by “coherent”.
The two problem, both raised in the literature, are: (I) Is there, amongst all the permutational products (p.p.s.) on the amalgam = (A, B; H) at least one which is a minimal generalized regular product? (II) If one of the p.p.s. on is isomorphic to the generalized free product (g.f.p.) F on U are they all? We answer both of them negatively.
A partially ordered semigroup S is said to be a Dubreil-Jacotin semigroup if there is an isotone homomorphism θ of S onto a partially ordered group such that {} has a greatest member. In this paper we investigate the structure of regular Dubreil-Jacotin semigroups in which the imposed partial order extends the natural partial order on the idempotents. The main tool used is a local structure theorem which is introduced in Section 2. This local structure theorem applies to many other contexts as well.
In 1957 P. Hall conjectured that every (finitely based) variety has the property that, for every group G, if the marginal factor-group is finite, then the verbal subgroup is also finite. The content of this paper is to present a precise bound for the order of the verbal subgroup of a G when the marginal factor-group is of order Pn (p a prime and n > 1) with respect to the variety of polynilpotent groups of a given class row. We also construct an example to show that the bound is attained and furthermore, we obtain a bound for the order of the Baer-invariant of a finite p-group with respect to the variety of polynilpotent groups.
A group G is called semi-n-abelian, if for every g ∈ G there exists at least one a(g) ∈ G-which depends only on g-such that (gh)n = a-1(g)gnhna(g) for all h ∈ G; a group G is called n-abelian, if a(g) = e for all g ∈ G. According to Durbin the following holds for n-abelian groups: If G is n-abelian for at lesast 3 consecutive integers, then G in n-abelian for all integers and these groups are exactly the abelian groups. In this paper this problem is generalized to the semi-n-abelian case: If a finite group G is semi-n-abelian for at least 4 consecutive integers then G is semi-n-abelian for all integers and these groups are exactly the nilpotent groups, where the Sylow-2-subgroup is abelian, the Sylow-3-subgroup is any element of the Levi-variety ([[g, h], h] = e ∀ g, h ∈ G) and the Sylow-p-subgroup (p < 3) is of class <2. As a consequence we get a description of all finite (3-)groups, which are elements of the Levi-variety.
Let m, n be infinite cardinals such that m < n, and let X be a set of cardinality m. Within the symmetric inverse semigroup on X the elements whose domain and range have complements of cardinality m form an inverse semigroup T. The closure Eω of the semilattice E of idempotents of T is a fundamental bismple inverse semigroup. Its maximum congruence is described. The quotient of Eο by this maximum congruence is a bisimple, congruence is a bisimple, congruence-free inverse semigroup.
A short and easy proof that the minimum number of generators of the nth direct power of a non-trival finite group of order s having automorphism group of order a is more than logsn + logsa, n > 1. On the other hand, for non-abelian simple G and large n, d(Gn) is within 1 + e of logsn + logsa.
A module M over a ring R is κ-projective, κ a cardinal, if M is projective relative to all exact sequence of R-modules 0 → A → B → C → 0 such that C has a generating set of cardinality less than κ. A structure theorem for κ-projective modules over Dedekind domains is proven, and the κ-projectivity of M is related to properties of ExtR (M, ⊕ R). Using results of S. Chase, S. Shelah and P. Eklof, the existence of non-projective и1-projective modules is shown to undecidable, while both the Continuum Hypothesis and its denial (Plus Martin's Axiom) imply the existence of a reduced И0-projective Z-module which is not free.
Reynolds (1972), using character-theory, showed that the p-section sums span an ideal of the centre Z(kG) of the group algebra of a finite group G over a field k of characteristic dividing the order of G. In O'Reilly (1973) a character-free proof was given. Here we extend these techniques to show the existence of a wider class of ideals of Z(kG).
It is shown that if m, n are relatively prime positive integers, then the variety consisting of those soluble groups of exponent mn in which any subgroup of exponent m or n is abelian has a basis of two-variable laws.
Every poset with 0 is determined by various semigroups of isotone selfmaps which preserve 0. Two theorems along these lines are given and applied to some recent results concerning relation semigroups on topological spaces.
A classical result of M. Zorn states that a finite group is nilpotent if and only if it satisfies an Engel condition. If this is the case, it satisfies almost all Engel conditions. We shall give a similar description of the class of p-soluble groups of p-length one by a sequence of commutator identities.
We determine which varieties of commutative semigroups have the weak or strong amalgamation property. These are precisely the varieties of inflations of semilattices of abelian groups.
In a previous paper ([14]) the author showed that a free inverse semigroup is determined by its lattice of inverse subsemigroups, in the sense that for any inverse semigroup T, implies . (In fact, the lattice isomorphism is induced by an isomorphism of upon T.) In this paper the results leading up to that theorem are generalized (from completely semisimple to arbitrary inverse semigroups) and applied to various classes, including simple, fundamental and E-unitary inverse semigroups. In particular it is shown that the free product of two groups in the category of inverse semigroups is determined by its lattice of inverse subsemigroups.
An example is given to show that a class of finite soluble groups that is both a Fitting class and a Schunck class need not be a formation. The novel feature of this class is that it is defined by imposing conditions on complemented chief factors of groups in it: this technique usually does not give rise to Fitting classes that are not formations.
It is shown that no proper ideal of a free inverse semigroup is free and that every isomorphism between ideals is induced by a unique automorphism of the whole semigroup. In addition, necessary and sufficient conditions are given for two principal ideals to be isomorhic.
It is shown that the simple groups G2(q), q = 3f, are characterized by their character table. This result completes characterization of the simple groups G2(q), q odd, by their character table.
Let R be a ring in which the multiplicative semigroup is completely semisimple. If R has the maximum (respectively, minimum) condition on principal multiplicative ideals. then R is semiprime artinian (respectively, a direct sum of dense rings of finite-rank linear transformations of vector spaces over division rings).
If G, H and B are groups such that G × B ≃ H × B, G/[G, G]. Z(G) is free abelian and B is finitely generated abelian, then G ≃ H. The equivalence classes of triples (Vξ,A) where Vand A are finitely generated free abelian groups and ξ: V⊗ V → A is a bilinear form constitute a semigroup B undera natural external orthogonal sum. This semigroup B is cancellative. A cancellation theorem for class 2 nilpotent groups is deduced.
We show that in a regular ring (R, +, ·), with idempotent set E, the following conditions are equivalent: (i) (ii) (R, ·) is orthodox. (iii) (R, ·) is a semilattice of groups. These and other conditions are also considered for regular semigroups, and for semirings (S, +, · ), in which (S, +) is an inverse semigroup. Examples are given to show that they are not equivalent in these cases.