We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The optimistic limit is a mathematical formulation of the classical limit, which is a physical method to estimate the actual limit by using the saddle-point method of a certain potential function. The original optimistic limit of the Kashaev invariant was formulated by Yokota, and a modified formulation was suggested by the author and others. This modified version is easier to handle and more combinatorial than the original one. On the other hand, it is known that the Kashaev invariant coincides with the evaluation of the colored Jones polynomial at a certain root of unity. This optimistic limit of the colored Jones polynomial was also formulated by the author and others, but it is very complicated and needs many unnatural assumptions. In this article, we suggest a modified optimistic limit of the colored Jones polynomial, following the idea of the modified optimistic limit of the Kashaev invariant, and show that it determines the complex volume of a hyperbolic link. Furthermore, we show that this optimistic limit coincides with the optimistic limit of the Kashaev invariant modulo $4{\it\pi}^{2}$. This new version is easier to handle and more combinatorial than the old version, and has many advantages over the modified optimistic limit of the Kashaev invariant. Because of these advantages, several applications have already appeared and more are in preparation.
We apply the concept of braiding sequences to link polynomials to show polynomial growth bounds on the derivatives of the Jones polynomial evaluated on S1 and of the Brandt–Lickorish–Millett–Ho polynomial evaluated on [–2, 2] on alternating and positive knots of given genus. For positive links, boundedness criteria for the coefficients of the Jones, HOMFLY and Kauffman polynomials are derived. (This is a continuation of the paper ‘Applications of braiding sequences. I’: Commun. Contemp. Math.12(5) (2010), 681–726.)
We prove that either the images of the mapping class groups by quantum representations are not isomorphic to higher rank lattices or else the kernels have a large number of normal generators. Further, we show that the images of the mapping class groups have non-trivial 2-cohomology, at least for small levels. For this purpose, we considered a series of quasi-homomorphisms on mapping class groups extending the previous work of Barge and Ghys (Math. Ann.294 (1992), 235–265) and of Gambaudo and Ghys (Bull. Soc. Math. France133(4) (2005), 541–579). These quasi-homomorphisms are pull-backs of the Dupont–Guichardet–Wigner quasi-homomorphisms on pseudo-unitary groups along quantum representations.
Given an oriented link in the 3-sphere, the Euler characteristic of its link Floer homology is known to coincide with its multi-variable Alexander polynomial, an invariant only defined up to a sign and powers of the variables. In this paper we remove this ambiguity by proving that this Euler characteristic is equal to the so-called Conway function, the representative of the multi-variable Alexander polynomial introduced by Conway in 1970 and explicitly constructed by Hartley in 1983. This is achieved by creating a model of the Conway function adapted to rectangular diagrams, which is then compared to the Euler characteristic of the combinatorial version of link Floer homology.
We present a careful approximation of the quasi-geodesics of trees of hyperbolic and relatively hyperbolic spaces. As an application we prove a dynamical and geometric combination theorem for trees of relatively hyperbolic spaces, with both Farb's and Gromov's definitions.
We apply results from both contact topology and exceptional surgery theory to study when Legendrian surgery on a knot yields a reducible manifold. As an application, we show that a reducible surgery on a non-cabled positive knot of genus $g$ must have slope $2g-1$, leading to a proof of the cabling conjecture for positive knots of genus 2. Our techniques also produce bounds on the maximum Thurston–Bennequin numbers of cables.
We prove a McShane-type identity: a series, expressed in terms of geodesic lengths, that sums to 2π for any closed hyperbolic surface with one distinguished point. To do so, we prove a generalized Birman-Series theorem showing that the set of complete geodesics on a hyperbolic surface with large cone angles is sparse.
It is a well-known procedure for constructing a torus knot or link that first we prepare an unknotted torus and meridian disks in its complementary solid tori, and second we smooth the intersections of the boundaries of the meridian disks uniformly. Then we obtain a torus knot or link on the unknotted torus and its Seifert surface made of meridian disks. In the present paper, we generalize this procedure by using a closed fake surface and show that the two resulting surfaces obtained by smoothing triple points uniformly are essential. We also show that a knot obtained by this procedure satisfies the Neuwirth conjecture and that the distance of two boundary slopes for the knot is equal to the number of triple points of the closed fake surface.
We present the results of computer experiments suggesting that the probability that a random multiword in a free group is virtually geometric decays to zero exponentially quickly in the length of the multiword. We also prove this fact.
This paper is devoted to determine the connectedness of the branch loci of the moduli space of non-orientable unbordered Klein surfaces. We obtain a result similar to Nielsen's in order to determine topological conjugacy of automorphisms of prime order on such surfaces. Using this result we prove that the branch locus is connected for surfaces of topological genus 4 and 5.
We apply the methods of Heegaard Floer homology to identify topological properties of
complex curves in $\mathbb{C}P^{2}$. As one application, we resolve an open
conjecture that constrains the Alexander polynomial of the link of the singular point
of the curve in the case that there is exactly one singular point, having connected
link, and the curve is of genus zero. Generalizations apply in the case of multiple
singular points.
This paper contains some applications of the description of knot diagrams by genus, and Gabai’s methods of disk decomposition. We show that there exists no genus one knot of canonical genus 2, and that canonical genus 2 fiber surfaces realize almost every Alexander polynomial only finitely many times (partially confirming a conjecture of Neuwirth).
Let $M$ be a complete hyperbolic 3-manifold homotopy equivalent to a compact surface $\Sigma $. Let $\Phi $ be a proper subsurface of $\Sigma $, whose boundary is sufficiently short in $M$. We show that the union of all Margulis tubes and cusps homotopic into $\Phi $ lifts to a uniformly quasiconvex subset of hyperbolic 3-space.
In this work, we describe a method to construct the generic braid monodromy of the
preimage of a curve by a Kummer cover. This method is interesting since it combines
two techniques, namely, the construction of a highly non-generic braid monodromy and
a systematic method to go from a non-generic to a generic braid monodromy. The latter
process, called generification, is independent from Kummer covers,
and it can be applied in more general circumstances since non-generic braid
monodromies appear more naturally and are oftentimes much easier to compute. Explicit
examples are computed using these techniques.
We study lens space surgeries along two different families of 2-component links, denoted by ${A}_{m, n} $ and ${B}_{p, q} $, related with the rational homology $4$-ball used in J. Park’s (generalized) rational blow down. We determine which coefficient $r$ of the knotted component of the link yields a lens space by Dehn surgery. The link ${A}_{m, n} $ yields a lens space only by the known surgery with $r= mn$ and unexpectedly with $r= 7$ for $(m, n)= (2, 3)$. On the other hand, ${B}_{p, q} $ yields a lens space by infinitely many $r$. Our main tool for the proof are the Reidemeister-Turaev torsions, that is, Reidemeister torsions with combinatorial Euler structures. Our results can be extended to the links whose Alexander polynomials are same as those of ${A}_{m, n} $ and ${B}_{p, q} $.
We compute the rings ${H}^{\ast } (N; { \mathbb{F} }_{2} )$ for $N$ a closed $ \mathbb{S} {\mathrm{ol} }^{3} $-manifold, and then determine the Borsuk–Ulam indices $\text{BU} (N, \phi )$ with $\phi \not = 0$ in ${H}^{1} (N; { \mathbb{F} }_{2} )$.
Let $G$ be a simple algebraic group. Labelled trivalent graphs called webs can be used to produce invariants in tensor products of minuscule representations. For each web, we construct a configuration space of points in the affine Grassmannian. Via the geometric Satake correspondence, we relate these configuration spaces to the invariant vectors coming from webs. In the case of $G= \mathrm{SL} (3)$, non-elliptic webs yield a basis for the invariant spaces. The non-elliptic condition, which is equivalent to the condition that the dual diskoid of the web is $\mathrm{CAT} (0)$, is explained by the fact that affine buildings are $\mathrm{CAT} (0)$.
An unknotting tunnel in a 3-manifold with boundary is a properly embedded arc, the complement of an open neighborhood of which is a handlebody. A geodesic with endpoints on the cusp boundary of a hyperbolic 3-manifold and perpendicular to the cusp boundary is called a vertical geodesic. Given a vertical geodesic $\alpha $ in a hyperbolic 3-manifold $M$, we find sufficient conditions for it to be an unknotting tunnel. In particular, if $\alpha $ corresponds to a 4-bracelet, 5-bracelet or 6-bracelet in the universal cover and has short enough length, it must be an unknotting tunnel. Furthermore, we consider a vertical geodesic $\alpha $ that satisfies the elder sibling property, which means that in the universal cover, every horoball except the one centered at $\infty $ is connected to a larger horoball by a lift of $\alpha $. Such an $\alpha $ with length less than $\ln (2)$ is then shown to be an unknotting tunnel.