We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that the Witten–Reshetikhin–Turaev (WRT) SO(3) invariant of an arbitrary 3-manifold M is always an algebraic integer. Moreover, we give a rational surgery formula for the unified invariant dominating WRT SO(3) invariants of rational homology 3-spheres at roots of unity of order co-prime with the torsion. As an application, we compute the unified invariant for Seifert fibered spaces and for Dehn surgeries on twist knots. We show that this invariant separates Seifert fibered integral homology spaces and can be used to detect the unknot.
We extend the normal surface Q-theory to non-compact 3-manifolds with respect to ideal triangulations. An ideal triangulation of a 3-manifold often has a small number of tetrahedra resulting in a system of Q-matching equations with a small number of variables. A unique feature of our approach is that a compact surface F with boundary properly embedded in a non-compact 3-manifold M with an ideal triangulation with torus cusps can be represented by a normal surface in M as follows. A half-open annulus made up of an infinite number of triangular disks is attached to each boundary component of F. The resulting surface , when normalized, will contain only a finite number of Q-disks and thus correspond to an admissible solution to the system of Q-matching equations. The correspondence is bijective.
A two-bridge knot (or link) can be characterized by the so-called Schubert normal form Kp, q where p and q are positive coprime integers. Associated to Kp, q there are the Conway polynomial ▽kp, q(z) and the normalized Alexander polynomial Δkp, q(t). However, it has been open problem how ▽kp, q(z) and Δkp, q(t) are expressed in terms of p and q. In this note, we will give explicit formulae for the Conway polynomials and the normalized Alexander polynomials in the case of two-bridge knots and links. This is done using elementary number theoretical functions in p and q.
In this paper we present a short definition of the Witten invariants of 3-manifolds. We also give simple proofs of invariance of those obtained for r = 3 and r = 4. Our definition is extracted from the 1993 paper of Lickorish and the Prasolov-Sossinsky book, where it is dispersed over 20 pages. We show by several examples that it is indeed convenient for calculations.
Let N be a closed s-Hopfian n-manifold with residually finite, torsion free π1 (N) and finite H1(N). Suppose that either πk(N) is finitely generated for all k ≥ 2, or πk(N) ≅ 0 for 1 < k < n – 1, or n ≤ 4. We show that if N fails to be a co-dimension 2 fibrator, then N cyclically covers itself, up to homotopy type.
Bounds are obtained for the minimum number of generators for the fundamental groups of a family of closed 3-dimensional manifolds. A significant role has been played by the use of computers.
The Spelling Theorem of B. B. Newman states that for a one-relator group (a1, … | Wn), any nontrivial word which represents the identity must contain a (cyclic) subword of W±n longer than Wn−1. We provide a new proof of the Spelling Theorem using towers of 2-complexes. We also give a geometric classification of reduced disc diagrams in one-relator groups with torsion. Either the disc diagram has three 2-cells which lie almost entuirly along the bounday, or the disc diagram looks like a ladder. We use this ladder theorem to prove that a large class of one-relator groups with torsion are locally quasiconvex.
§0. Introduction. Low-dimensional topology is dominated by the fundamental group. However, since every finitely presented group is the fundamental group of some closed 4-manifold, it is often stated that the effective influence of π1 ends in dimension three. This is not quite true, however, and there are some interesting border disputes. In this paper, we show that, by imposing the extra condition of parallelizability on the tangent bundle, the dominion of π1 is extended by an extra dimension.
Let N be a finitely generated normal subgroup of a finitely generated group G. We show that if the trivial subgroup is tame in the factor group G/N, then N is that in G. We also give a short new proof of the fact that quasiconvex subgroups of negatively curved groups are tame. The proof utilizes the concept of the geodesic core of the subgroup and is related to the Dehn algorithm.
We show that diagrammatically reducible two-complexes are characterized by the property: every finity subconmplex of the universal cover collapses to a one-complex. We use this to show that a compact orientable three-manifold with nonempty boundary is Haken if and only if it has a diagrammatically reducible spine. We also formulate an nanlogue of diagrammatic reducibility for higher dimensional complexes. Like Haken three-manifolds, we observe that if n ≥ 4 and M is compact connected n-dimensional manifold with a traingulation, or a spine, satisfying this property, then the interior of the universal cover of M is homeomorphic to Euclidean n-space.
It is conjectured that a hyperbolic knot complement does not contain a closed embedded totally geodesic surface. In this paper, we show that there are no such surfaces in the complements of hyperbolic 3-bridge knots and double torus knots. Some topological criteria for a closed essential surface failing to be totally geodesic are given. Roughly speaking, sufficiently ‘complicated’ surfaces cannot be totally geodesic.
In previous work [2] calculations of subquadratic second order Dehn functions for various groups were carried out. In this paper we obtain estimates for upper and lower bounds of second order Dehn functions of HNN-extensions, and use these to exhibit an infinite number of different superquadratic second order Dehn functions. At the end of the paper several open questions concerning second order Dehn functions of groups are discussed.
We show that the group F discovered by Richard Thompson in 1965 has a subexponential upper bound for its Dehn function. This disproves a conjecture by Gersten. We also prove that F has a regular terminating confluent presentation.
A planar graph contains faces which can be classified into types depending on the number of edges on the face boundaries. Under various natural rules for randomly dividing faces by the addition of new edges, we investigate the limiting distribution of face type as the number of divisions increases.
Regular maps of type {p, q}r and the associated groups Gp,q,r are considered for small values for p, q and r. In particular, it is shown that the groups G4,6,6 and G5,5,6 are Abelian-by-infinite, and there are infinitely many regular maps of each of the types {4, 6}6, {5, 5}6, {5, 6}6 and {6, 6}6.
Every knot admits a special projection with the property that under the projection discs in the canonical Seifert surface project disjointly. Under an isotopy, such a projection can be turned into a connected sum of what we call inseparable projections. The main result is that if there is no band in an inseparable projection with half-twisting number +1 or −1, then the projection is not a projection of the trivial knot. To prove this a non-cyclic Coxeter group is constructed as a quotient of the knot group. The construction is possibly of interest in itself. The techniques developed are applied to give a criterion to decide when an inseparable projection with 3 discs comes from the trivial knot.
Using elementary methods we give a new proof of a result concerning the special form of the character of the bounded peripheral element which arises at an end of a curve component of the character variety of a knot complement.
Existence and properties of incompressible surfaces in 3-dimensional manifolds are surveyed. Some conjectures of Waldhausen and Thurston concerning such surfaces are stated. An outline is given of the proof that such surfaces can be pulled back by non-zero degree maps between 3-manifolds. The effect of surgery on immersed, incompressible surfaces and on hierarchies is discussed. A characterisation is given of the immersed, incompressible surfaces previously studied by Hass and Scott, which arise naturally with cubings of non-positive curvature.
We give an account of the minimal volume of the plane, as defined by Gromov, and first computed by Bavard and Pansu. We also describe some related geometric inequalities.