To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We provide an unconditional proof of the André–Oort conjecture for the coarse moduli space 𝒜2,1 of principally polarized abelian surfaces, following the strategy outlined by Pila–Zannier.
We prove the following theorems. Theorem 1: for any E-field with cyclic kernel, in particular ℂ or the Zilber fields, all real abelian algebraic numbers are pointwise definable. Theorem 2: for the Zilber fields, the only pointwise definable algebraic numbers are the real abelian numbers.
We devise a fairly general sufficient condition ensuring that the endomorphism monoid of a countably infinite ultrahomogeneous structure (i.e. a Fraïssé limit) embeds all countable semigroups. This approach not only provides us with a framework unifying the previous scattered results in this vein, but actually yields new applications for endomorphism monoids of the (rational) Urysohn space and the countable universal ultrahomogeneous semilattice.
According to the André–Oort conjecture, an algebraic curve in Y (1)n that is not equal to a special subvariety contains only finitely many points which correspond to ann-tuple of elliptic curves with complex multiplication. Pink’s conjecture generalizes the André–Oort conjecture to the extent that if the curve is not contained in a special subvariety of positive codimension, then it is expected to meet the union of all special subvarieties of codimension two in only finitely many points. We prove this for a large class of curves in Y (1)n. When restricting to special subvarieties of codimension two that are not strongly special we obtain finiteness for all curves defined over . Finally, we formulate and prove a variant of the Mordell–Lang conjecture for subvarieties of Y (1)n.
We study the existence of some covers and envelopes in the chain complex category of R-modules. Let (𝒜,ℬ) be a cotorsion pair in R-Mod and let ℰ𝒜 stand for the class of all exact complexes with each term in 𝒜. We prove that (ℰ𝒜,ℰ𝒜⊥) is a perfect cotorsion pair whenever 𝒜 is closed under pure submodules, cokernels of pure monomorphisms and direct limits and so every complex has an ℰ𝒜-cover. As an application we show that every complex of R-modules over a right coherent ring R has an exact Gorenstein flat cover. In addition, the existence of -covers and -envelopes of special complexes is considered where and denote the classes of all complexes with each term in 𝒜 and ℬ, respectively.
An interval in a combinatorial structure R is a set I of points that are related to every point in R∖I in the same way. A structure is simple if it has no proper intervals. Every combinatorial structure can be expressed as an inflation of a simple structure by structures of smaller sizes—this is called the substitution (or modular) decomposition. In this paper we prove several results of the following type: an arbitrary structure S of size n belonging to a class 𝒞 can be embedded into a simple structure from 𝒞 by adding at most f(n) elements. We prove such results when 𝒞 is the class of all tournaments, graphs, permutations, posets, digraphs, oriented graphs and general relational structures containing a relation of arity greater than two. The functions f(n) in these cases are 2, ⌈log 2(n+1)⌉, ⌈(n+1)/2⌉, ⌈(n+1)/2⌉, ⌈log 4(n+1)⌉, ⌈log 3(n+1)⌉ and 1, respectively. In each case these bounds are the best possible.
We prove that if K is an (infinite) stable field whose generic type has weight 1, then K is separably closed. We also obtain some partial results about stable groups and fields whose generic type has finite weight, as well as about strongly stable fields (where by definition all types have finite weight).
We consider valued fields with a value-preserving automorphism and improve on model-theoretic results by Bélair, Macintyre and Scanlon on these objects by dropping assumptions on the residue difference field. In the equicharacteristic 0 case we describe the induced structure on the value group and the residue difference field.
We prove that n-hypergraphs can be interpreted in e-free perfect PAC fields in particular in pseudofinite fields. We use methods of function field arithmetic, more precisely we construct generic polynomials with alternating groups as Galois groups over a function field.
A shift automorphism algebra is one satisfying the conditions of the shift automorphism theorem, and a shift automorphism variety is a variety generated by a shift automorphism algebra. In this paper, we show that every shift automorphism variety contains a countably infinite subdirectly irreducible algebra.
The arithmetic is interpreted in all the groups of Richard Thompson and Graham Higman, as well as in other groups of piecewise affine permutations of an interval which generalize the groups of Thompson and Higman. In particular, the elementary theories of all these groups are undecidable. Moreover, Thompson's group F and some of its generalizations interpret the arithmetic without parameters.
We apply the collapse techniques to Poizat's red differential field in order to obtain differentially closed fields of Morley rank ω·2 each equipped with an additive definable subgroup of rank ω. By means of the logarithmic derivative, we obtain a green field of rank ω·2 with a multiplicative definable divisible subgroup containing the field of constants, which is again definable in the reduct of the green field.
We consider a new subgroup In(G) in any group G of finite Morley rank. This definably characteristic subgroup is the smallest normal subgroup of G from which we can hope to build a geometry over the quotient group G/ In(G). We say that G is a geometric group if In(G) is trivial.
This paper is a discussion of a conjecture which states that every geometric group G of finite Morley rank is definably linear over a ring K1 ⊕…⊕ Kn where K1,…,Kn are some interpretable fields. This linearity conjecture seems to generalize the Cherlin–Zil'ber conjecture in a very large class of groups of finite Morley rank.
We show that, if this linearity conjecture is true, then there is a Rosenlicht theorem for groups of finite Morley rank, in the sense that the quotient group of any connected group of finite Morley rank by its hypercentre is definably linear.
In order to construct a counterexample to Zilber's conjecture—that a strongly minimal set has a degenerate, affine or field-like geometry—Ehud Hrushovski invented an amalgamation technique which has yielded all the exotic geometries so far. We shall present a framework for this construction in the language of standard geometric stability and show how some of the recent constructions fit into this setting. We also ask some fundamental questions concerning this method.
The notion of an angular function has been introduced by Zilber as one possible way of connecting non-commutative geometry with two ‘counterexamples’ from model theory: the non-classical Zariski curves of Hrushovski and Zilber, and Poizat's field with green points. This article discusses some questions of Zilber relating to existentially closed structures in the class of algebraically closed fields with an angular function.
We construct the free fusion of two geometric thories over a common ω-categorical strongly minimal reduct. If the two theories are supersimple of rank 1 (and satisfy an additional hypothesis true in particular for stable theories or trivial reduct), the completions of the free fusion are supersimple of rank at most ω.
We draw a connection between the model-theoretic notions of modularity (or one-basedness), orthogonality and internality, as applied to difference fields, and questions of descent in in algebraic dynamics. In particular we prove in any dimension a strong dynamical version of Northcott's theorem for function fields, answering a question of Szpiro and Tucker and generalizing a theorem of Baker's for the projective line.
The paper comes in three parts. This first part contains an exposition some of the main results of the model theory of difference fields, and their immediate connection to questions of descent in algebraic dynamics. We present the model-theoretic notion of internality in a context that does not require a universal domain with quantifier-elimination. We also note a version of canonical heights that applies well beyond polarized algebraic dynamics. Part II sharpens the structure theory to arbitrary base fields and constructible maps where in part I we emphasize finite base change and correspondences. Part III will include precise structure theorems related to the Galois theory considered here, and will enable a sharpening of the descent results for non-modular dynamics.
This second part of the paper strengthens the descent theory described in the first part torational maps and arbitrary base fields. We obtain in particular a decomposition of any difference field extension into a tower of finite, field-internal and one-based difference field extensions. This is needed in order to obtain the ‘dynamical Northcott’ Theorem 1.11 of Part I in sharp form.
While the classification project for the simple groups of finite Morley rank is unlikely toproduce a classification of the simple groups of finite Morley rank, the enterprise has already arrived at a considerably closer approximation to that ideal goal than could have been realistically anticipated, with a mix of results of several flavors, some classificatory and others more structural, which can be combined when the stars are suitably aligned to produce results at a level of generality which, in parallel areas of group theory, would normally require either some additional geometric structure, or an explicit classification. And Bruno Poizat is generally awesome, though sometimes he goes too far.
Dichotomies in various conjectures from algebraic geometry are in fact occurrences of the dichotomy among Zariski structures. This is what Hrushovski showed and which enabled him to solve, positively, the geometric Mordell–Lang conjecture in positive characteristic. Are we able now to avoid this use of Zariski structures? Pillay and Ziegler have given a direct proof that works for semi-abelian varieties they called ‘very thin’, which include the ordinary abelian varieties. But it does not apply in all generality: we describe here an abelian variety which is not very thin. More generally, we consider from a model-theoretical point of view several questions about the fields of definition of semi-abelian varieties.