We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
for infinitely many primes $p$ that supersede those of Harman [Trigonometric sums over primes I. Mathematika28 (1981), 249–254; Trigonometric sums over primes II. Glasg. Math. J.24 (1983), 23–37] and Wong [On the distribution of $\unicode[STIX]{x1D6FC}p^{k}$ modulo 1. Glasg. Math. J.39 (1997), 121–130].
with $1\leqslant x_{i},y_{i}\leqslant X\;(1\leqslant i\leqslant s)$. By exploiting sharp estimates for an auxiliary mean value, we obtain bounds for $I_{s,k,r}(X)$ for $1\leqslant r\leqslant k-1$. In particular, when $s,k\in \mathbb{N}$ satisfy $k\geqslant 3$ and $1\leqslant s\leqslant (k^{2}-1)/2$, we establish the essentially diagonal behaviour $I_{s,k,1}(X)\ll X^{s+\unicode[STIX]{x1D700}}$.
We improve a recent result of B. Hanson [Estimates for character sums with various convolutions. Preprint, 2015, arXiv:1509.04354] on multiplicative character sums with expressions of the type $a+b+cd$ and variables $a,b,c,d$ from four distinct sets of a finite field. We also consider similar sums with $a+b(c+d)$. Our new bounds rely on some recent advances in additive combinatorics.
We apply multigrade efficient congruencing to estimate Vinogradov’s integral of degree $k$ for moments of order $2s$, establishing strongly diagonal behaviour for $1\leqslant s\leqslant \frac{1}{2}k(k+1)-\frac{1}{3}k+o(k)$. In particular, as $k\rightarrow \infty$, we confirm the main conjecture in Vinogradov’s mean value theorem for a proportion asymptotically approaching $100\%$ of the critical interval $1\leqslant s\leqslant \frac{1}{2}k(k+1)$.
Assuming the Riemann Hypothesis, Soundararajan [Ann. of Math. (2) 170 (2009), 981–993] showed that $\int _{0}^{T}|\unicode[STIX]{x1D701}(1/2+\text{i}t)|^{2k}\ll T(\log T)^{k^{2}+\unicode[STIX]{x1D716}}$. His method was used by Chandee [Q. J. Math.62 (2011), 545–572] to obtain upper bounds for shifted moments of the Riemann Zeta function. Building on these ideas of Chandee and Soundararajan, we obtain, conditionally, upper bounds for shifted moments of Dirichlet $L$-functions which allow us to derive upper bounds for moments of theta functions.
We consider the distribution of the polygonal paths joining partial sums of classical Kloosterman sums $\text{Kl}_{p}(a)$, as $a$ varies over $\mathbf{F}_{p}^{\times }$ and as $p$ tends to infinity. Using independence of Kloosterman sheaves, we prove convergence in the sense of finite distributions to a specific random Fourier series. We also consider Birch sums, for which we can establish convergence in law in the space of continuous functions. We then derive some applications.
We investigate exponential sums over those numbers ${\leqslant}x$ all of whose prime factors are ${\leqslant}y$. We prove fairly good minor arc estimates, valid whenever $\log ^{3}x\leqslant y\leqslant x^{1/3}$. Then we prove sharp upper bounds for the $p$th moment of (possibly weighted) sums, for any real $p>2$ and $\log ^{C(p)}x\leqslant y\leqslant x$. Our proof develops an argument of Bourgain, showing that this can succeed without strong major arc information, and roughly speaking it would give sharp moment bounds and restriction estimates for any set sufficiently factorable relative to its density. By combining our bounds with major arc estimates of Drappeau, we obtain an asymptotic for the number of solutions of $a+b=c$ in $y$-smooth integers less than $x$ whenever $\log ^{C}x\leqslant y\leqslant x$. Previously this was only known assuming the generalised Riemann hypothesis. Combining them with transference machinery of Green, we prove Roth’s theorem for subsets of the $y$-smooth numbers whenever $\log ^{C}x\leqslant y\leqslant x$. This provides a deterministic set, of size ${\approx}x^{1-c}$, inside which Roth’s theorem holds.
Let $E(N)$ denote the number of positive integers $n\leqslant N$, with $n\equiv 4\;(\text{mod}\;24)$, which cannot be represented as the sum of four squares of primes. We establish that $E(N)\ll N^{11/32}$, thus improving on an earlier result of Harman and the first author, where the exponent $7/20$ appears in place of $11/32$.
In this paper, we study how small a box contains at least two points from a modular hyperbola $xy\equiv c\;(\text{mod}\;p)$. There are two such points in a square of side length $p^{1/4+\unicode[STIX]{x1D716}}$. Furthermore, it turns out that either there are two such points in a square of side length $p^{1/6+\unicode[STIX]{x1D716}}$ or the least quadratic non-residue is less than $p^{1/(6\sqrt{e})+\unicode[STIX]{x1D716}}$.
An important result of Weyl states that for every sequence $(a_{n})_{n\geqslant 1}$ of distinct positive integers the sequence of fractional parts of $(a_{n}{\it\alpha})_{n\geqslant 1}$ is uniformly distributed modulo one for almost all ${\it\alpha}$. However, in general it is a very hard problem to calculate the precise order of convergence of the discrepancy of $(\{a_{n}{\it\alpha}\})_{n\geqslant 1}$ for almost all ${\it\alpha}$. In particular, it is very difficult to give sharp lower bounds for the speed of convergence. Until now this was only carried out for lacunary sequences $(a_{n})_{n\geqslant 1}$ and for some special cases such as the Kronecker sequence $(\{n{\it\alpha}\})_{n\geqslant 1}$ or the sequence $(\{n^{2}{\it\alpha}\})_{n\geqslant 1}$. In the present paper we answer the question for a large class of sequences $(a_{n})_{n\geqslant 1}$ including as a special case all polynomials $a_{n}=P(n)$ with $P\in \mathbb{Z}[x]$ of degree at least 2.
In this paper, we investigate in various ways the representation of a large natural number as a sum of a fixed power of Piatetski-Shapiro numbers, thereby establishing a variant of the Hilbert–Waring problem with numbers from a sparse sequence.
We show that substantially more than a quarter of the odd integers of the form $pq$ up to $x$, with $p,q$ both prime, satisfy $p\equiv q\equiv 3~(\text{mod}\,4)$.
where $\,\mathbf{e}_{p}(z)$ is a non-trivial additive character of the prime finite field $\mathbb{F}_{p}$ of $p$ elements, with integers $U$, $V$, a polynomial $f\in \mathbb{F}_{p}[X]$ and some complex weights $\{\unicode[STIX]{x1D6FC}_{u}\}$, $\{\unicode[STIX]{x1D6FD}_{v}\}$. In particular, for $f(X)=aX+b$, we obtain new bounds of bilinear sums with Kloosterman fractions. We also obtain new bounds for similar sums with multiplicative characters of $\mathbb{F}_{p}$.
Let $Q(x,y,z)$ be an integral quadratic form with determinant coprime to some modulus $q$. We show that $q\,|\,Q$ for some non-zero integer vector $(x,y,z)$ of length $O(q^{5/8+{\it\varepsilon}})$, for any fixed ${\it\varepsilon}>0$. Without the coprimality condition on the determinant one could not necessarily achieve an exponent below $2/3$. The proof uses a bound for short character sums involving binary quadratic forms, which extends a result of Chang.
for $m,n$ positive integers, to all $s\in \mathbb{C}$. There are poles of the function corresponding to zeros of the Riemann zeta function and the spectral parameters of Maass forms. The analytic properties of this function are rather delicate. It turns out that the spectral expansion of the zeta function converges only in a left half-plane, disjoint from the region of absolute convergence of the Dirichlet series, even though they both are analytic expressions of the same meromorphic function on the entire complex plane.
Let ${\rm\Lambda}(n)$ be the von Mangoldt function, $x$ be real and $2\leqslant y\leqslant x$. This paper improves the estimate for the exponential sum over primes in short intervals
when $k\geqslant 3$ for ${\it\alpha}$ in the minor arcs. When combined with the Hardy–Littlewood circle method, this enables us to investigate the Waring–Goldbach problem concerning the representation of a positive integer $n$ as the sum of $s$$k$th powers of almost equal prime numbers, and improve the results of Wei and Wooley [On sums of powers of almost equal primes. Proc. Lond. Math. Soc. (3) 111(5) (2015), 1130–1162].
Let $P(n)$ denote the largest prime factor of an integer $n\geq 2$. In this paper, we study the distribution of the sequence $\{f(P(n)):n\geq 1\}$ over the set of congruence classes modulo an integer $b\geq 2$, where $f$ is a strongly $q$-additive integer-valued function (that is, $f(aq^{j}+b)=f(a)+f(b),$ with $(a,b,j)\in \mathbb{N}^{3}$, $0\leq b<q^{j}$). We also show that the sequence $\{{\it\alpha}P(n):n\geq 1,f(P(n))\equiv a\;(\text{mod}~b)\}$ is uniformly distributed modulo 1 if and only if ${\it\alpha}\in \mathbb{R}\!\setminus \!\mathbb{Q}$.