To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For Maxwell’s equations with nonlinear polarization we prove the existence of time-periodic breather solutions travelling along slab or cylindrical waveguides. The solutions are TE-modes which are localized in one (slab case) or both (cylindrical case) space directions orthogonal to the direction of propagation. We assume a magnetically inactive and electrically nonlinear material law with a linear $\chi^{(1)}$- and a cubic $\chi^{(3)}$-contribution to the polarization. The $\chi^{(1)}$-contribution may be retarded in time or instantaneous whereas the $\chi^{(3)}$-contribution is always assumed to be retarded in time. We consider two different cubic nonlinearities which provide a variational structure under suitable assumptions on the retardation kernels, in particular we require that for time-periodic solutions Maxwell’s equations are invariant under time-inversion. By choosing a sufficiently small propagation speed along the waveguide the second order formulation of the Maxwell system becomes essentially elliptic for the E-field so that solutions can be constructed by the mountain pass theorem. The compactness issues arising in the variational method are overcome by either the cylindrical geometry itself or by extra assumptions on the linear and nonlinear parts of the polarization in case of the slab geometry. Our approach to breather solutions in the presence of time-retardation is systematic in the sense that we look for general conditions on the Fourier-coefficients in time of the retardation kernels. Our main existence result is complemented by concrete examples of coefficient functions and retardation kernels.
where $\nabla\times$ denotes the usual curl operator in $\mathbb{R}^3$, $\mu_1,\mu_2 \gt 0$, and $\beta\in\mathbb{R}\backslash\{0\}$. We show that this critical system admits a non-trivial ground state solution when the parameter β is positive and small. For general $\beta\in\mathbb{R}\backslash\{0\}$, we prove that this system admits a non-trivial cylindrically symmetric solution with the least positive energy. We also study the existence of the curl-free solution and the synchronized solution due to the special structure of this system. These seem to be the first results on the critically coupled system containing the curl-curl operator.
In this paper, we show that the diffraction of the primes is absolutely continuous, showing no bright spots (Bragg peaks). We introduce the notion of counting diffraction, extending the classical notion of (density) diffraction to sets of density zero. We develop the counting diffraction theory and give many examples of sets of zero density of all possible spectral types.
Mathematical modelling of microwaves travelling through bauxite ore provides a way to compute moisture content in the free space transmission method given data on signal attenuation, phase shift and variable bauxite depth. We extend a recently developed four-layer model that uses coupled ordinary differential wave equations for the electric field together with continuity boundary conditions at interfaces between ore, air and antenna to find a solution that incorporates multiple internal reflections in ore and air. The model provides good fits to data, depending on ore permittivity and conductivity.
Our extensions are to use effective medium models to obtain electromagnetic properties of the ore mixture from moisture content and to incorporate the damping effects of scattering from the ore surface. Our model leads to a formula for the received signal showing how signal strengths SS and phase shifts depend on the moisture content of the bauxite ore, through the effects of moisture on permittivity and conductivity. We show that SS may be noninvertible, indicating that attenuation data alone cannot be used to infer moisture content. Combining with phase data typically corrects the noninvertibility. Reducing the operating frequency dramatically improves the usefulness of signal strength data for inferring moisture content.
Being able to characterise objects at low frequencies, but in situations where the modelling error in the eddy current approximation of the Maxwell system becomes large, is important for improving current metal detection technologies. Importantly, the modelling error becomes large as the frequency increases, but the accuracy of the eddy current model also depends on the object topology and on its materials, with the error being much larger for certain geometries compared to others of the same size and materials. Additionally, the eddy current model breaks down at much smaller frequencies for highly magnetic conducting materials compared to non-permeable objects (with similar conductivities, sizes and shapes) and, hence, characterising small magnetic objects made of permeable materials using the eddy current at typical frequencies of operation for a metal detector is not always possible. To address this, we derive a new asymptotic expansion for permeable highly conducting objects that is valid for small objects and holds not only for frequencies where the eddy current model is valid but also for situations where the eddy current modelling error becomes large and applying the eddy approximation would be invalid. The leading-order term we derive leads to new forms of object characterisations in terms of polarizability tensor object descriptions where the coefficients can be obtained from solving vectorial transmission problems. We expect these new characterisations to be important when considering objects at greater stand-off distance from the coils, which is important for safety critical applications, such as the identification of landmines, unexploded ordnance and concealed weapons. We also expect our results to be important when characterising artefacts of archaeological and forensic significance at greater depths than the eddy current model allows and to have further applications parking sensors and improving the detection of hidden, out-of-sight, metallic objects.
This paper is concerned with the increasing stability of the inverse source problem for the elastic wave equation with attenuation in three dimensions. The stability estimate consists of the Lipschitz type data discrepancy and the high frequency tail of the source function, where the latter decreases as the upper bound of the frequency increases. The stability also shows exponential dependence on the attenuation coefficient. The ingredients of the analysis include Carleman estimates and time decay estimates for the elastic wave equation to obtain an exact observability bound, and the study of the resonance-free region and an upper bound of the resolvent in this region for the elliptic operator with respect to the complex frequency. The advantage of the method developed in this work is that it can be used to study the case of variable attenuation coefficient.
In this contribution, we present a modelling and simulation framework for parametrised lithium-ion battery cells. We first derive a continuum model for a rather general intercalation battery cell on the basis of non-equilibrium thermodynamics. In order to efficiently evaluate the resulting parameterised non-linear system of partial differential equations, the reduced basis method is employed. The reduced basis method is a model order reduction technique on the basis of an incremental hierarchical approximate proper orthogonal decomposition approach and empirical operator interpolation. The modelling framework is particularly well suited to investigate and quantify degradation effects of battery cells. Several numerical experiments are given to demonstrate the scope and efficiency of the modelling framework.
Consider the extended hull of a weak model set together with its natural shift action. Equip the extended hull with the Mirsky measure, which is a certain natural pattern frequency measure. It is known that the extended hull is a measure-theoretic factor of some group rotation, which is called the underlying torus. Among other results, in the article Periods and factors of weak model sets, we showed that the extended hull is isomorphic to a factor group of the torus, where certain periods of the window of the weak model set have been factored out. This was proved for weak model sets having a compact window. In this note, we argue that the same results hold for arbitrary measurable and relatively compact windows. Our arguments crucially rely on Moody’s work on uniform distribution in model sets. We also discuss implications for the diffraction of such weak model sets and discuss a new class of examples which are generic for the Mirsky measure.
The Helmholtz equation $-\nabla\cdot (a\nabla u) - \omega^2 u = f$ is considered in an unbounded wave guide $\Omega := \mathbb{R} \times S \subset \mathbb{R}^d$, $S\subset \mathbb{R}^{d-1}$ a bounded domain. The coefficient a is strictly elliptic and either periodic in the unbounded direction $x_1 \in \mathbb{R}$ or periodic outside a compact subset; in the latter case, two different periodic media can be used in the two unbounded directions. For non-singular frequencies $\omega$, we show the existence of a solution u. While previous proofs of such results were based on analyticity arguments within operator theory, here, only energy methods are used.
This paper presents the current state of mathematical modelling of the electrochemical behaviour of lithium-ion batteries (LIBs) as they are charged and discharged. It reviews the models developed by Newman and co-workers, both in the cases of dilute and moderately concentrated electrolytes and indicates the modelling assumptions required for their development. Particular attention is paid to the interface conditions imposed between the electrolyte and the active electrode material; necessary conditions are derived for one of these, the Butler–Volmer relation, in order to ensure physically realistic solutions. Insight into the origin of the differences between various models found in the literature is revealed by considering formulations obtained by using different measures of the electric potential. Materials commonly used for electrodes in LIBs are considered and the various mathematical models used to describe lithium transport in them discussed. The problem of upscaling from models of behaviour at the single electrode particle scale to the cell scale is addressed using homogenisation techniques resulting in the pseudo-2D model commonly used to describe charge transport and discharge behaviour in lithium-ion cells. Numerical solution to this model is discussed and illustrative results for a common device are computed.
A Doyle–Fuller–Newman (DFN) model for the charge and discharge of nano-structured lithium iron phosphate (LFP) cathodes is formulated on the basis that lithium transport within the nanoscale LFP electrode particles is much faster than cell discharge, and is therefore not rate limiting. We present some numerical solutions to the model and show that for relevant parameter values, and a variety of C-rates, it is possible for sharp discharge fronts to form and intrude into the electrode from its outer edge(s). These discharge fronts separate regions of fully utilised LFP electrode particles from those that are not. Motivated by this observation an asymptotic solution to the model is sought. The results of the asymptotic analysis of the DFN model lead to a reduced order model, which we term the reaction front model (or RFM). Favourable agreement is shown between solutions to the RFM and the full DFN model in appropriate parameter regimes. The RFM is significantly cheaper to solve than the DFN model, and therefore has the potential to be used in scenarios where computational costs are prohibitive, e.g. in optimisation and parameter estimation problems or in engineering control systems.
This paper gives a brief overview of some configurations in which high-frequency wave propagation modelled by Helmholtz equation gives rise to solutions that vary rapidly across thin layers. The configurations are grouped according to their mathematical structure and tractability and one of them concerns a famous open problem of mathematical physics.
We investigate the Fano resonance in grating structures using coupled resonators. The grating consists of a perfectly conducting slab with periodically arranged subwavelength slit holes, where inside each period, a pair of slits sit very close to each other. The slit holes act as resonators and are strongly coupled. It is shown rigorously that there exist two groups of resonances corresponding to poles of the scattering problem. One sequence of resonances has imaginary part in the order of ε, where ε is the size of the slit aperture, while the other sequence has imaginary part in the order of ε2. When coupled with the incident wave at resonant frequencies, the narrow-band resonant scattering induced by the latter will interfere with the broader background resonant radiation induced by the former. The interference of these two resonances generates the Fano-type transmission anomaly, which persists in the whole radiation continuum of the grating structure as long as the slit aperture size is small compared to the incident wavelength.
For a fixed k ∈ {1, …, d}, consider arbitrary random vectors X0, …, Xk ∈ ℝd such that the (k + 1)-tuples (UX0, …, UXk) have the same distribution for any rotation U. Let A be any nonsingular d × d matrix. We show that the k-dimensional volume of the convex hull of affinely transformed Xi satisfies \[|{\rm{conv}}(A{X_{\rm{0}}} \ldots ,A{X_k}){\rm{|}}\mathop {\rm{ = }}\limits^{\rm{D}} (|{P_\xi }\varepsilon |/{\kappa _k})|{\rm{conv}}\left( {{X_0}, \ldots ,{X_k}} \right)\], where ɛ:= {x ∈ ℝd : x┬ (A┬A)−1x ≤ 1} is an ellipsoid, Pξ denotes the orthogonal projection to a uniformly chosen random k-dimensional linear subspace ξ independent of X0, …, Xk, and κk is the volume of the unit k-dimensional ball. As an application, we derive the following integral geometry formula for ellipsoids: ck,d,p∫Ad,k |ɛ ∩ E|p+d+1μd,k(dE) = |ɛ|k+1∫Gd,k |PLɛ|pνd,k(dL), where $c_{k,d,p} = \big({\kappa_{d}^{k+1}}/{\kappa_k^{d+1}}\big) ({\kappa_{k(d+p)+k}}/{\kappa_{k(d+p)+d}})$. Here p > −1 and Ad,k and Gd,k are the affine and the linear Grassmannians equipped with their respective Haar measures. The p = 0 case reduces to an affine version of the integral formula of Furstenberg and Tzkoni (1971).
In this article we are interested in the rigorous construction of WKB expansions for hyperbolic boundary value problems in the strip $\mathbb{R}^{d-1}\times [0,1]$. In this geometry, a new inversibility condition has to be imposed to construct the WKB expansion. This new condition is due to selfinteraction phenomenon which naturally appear when several boundary conditions are imposed. More precisely, by selfinteraction we mean that some rays can regenerated themselves after some rebounds against the sides of the strip. This phenomenon is not new and has already been studied in Benoit (Geometric optics expansions for hyperbolic corner problems, I: self-interaction phenomenon, Anal. PDE9(6) (2016), 1359–1418), Sarason and Smoller (Geometrical optics and the corner problem, Arch. Rat. Mech. Anal.56 (1974/75), 34–69) in the corner geometry. In this framework the existence of such selfinteracting rays is linked to specific geometries of the characteristic variety and may seem to be somewhat anecdotal. However for the strip geometry such rays become generic. The new inversibility condition, used to construct the WKB expansion, is a microlocalized version of the one characterizing the uniform in time strong well-posedness (Benoit, Lower exponential strong well-posedness of hyperbolic boundary value problems in a strip (preprint)). It is interesting to point here that such a situation already occurs in the half space geometry(Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math.23 (1970), 277–298).
Applications of a WKBJ-type ‘ray ansatz’ to obtain asymptotic solutions of the Helmholtz equation in the high-frequency limit are now standard and underpin the construction of ‘geometrical optics’ ray diagrams in many electromagnetic, acoustic and elastic reflection, transmission and other scattering problems. These applications were subsequently extended by Keller to include other types of rays – called ‘diffracted’ rays – to provide an accessible and impressively accurate theory which is relevant in wide-ranging sets of circumstances. Friedlander and Keller then introduced a modified ray ansatz to extend yet further the scope of ray theory and its applicability to certain other classes of diffraction problems (tangential ray incidence upon an obstructing boundary, for instance) and did so by the inclusion of an extra term proportional to a power of the wave number within the exponent of the initial ansatz. Our purpose here is to generalise this further still by the inclusion of several such terms, ordered in a natural sequence in terms of strategically chosen fractional powers of the large wave number, and to derive a systematic sequence of boundary value problems for the coefficient phase functions that arise within this generalised exponent, as well as one for the leading-order amplitude occurring as a pre-exponential factor. One particular choice of fractional power is considered in detail, and waves with specified radially symmetric or planar wavefronts are then analysed, along with a boundary value problem typifying two-dimensional radiation whereby arbitrary phase and amplitude variations are specified on a prescribed boundary curve. This theory is then applied to the scattering of plane and cylindrical waves at curved boundaries with small-scale perturbations to their underlying profile.
We analyse a scattering problem of electromagnetic waves by a bounded chiral conductive obstacle, which is surrounded by a dielectric, via the quasi-stationary approximation for the Maxwell equations. We prove the reciprocity relations for incident plane and spherical electric waves upon the scatterer. Mixed reciprocity relations have also been proved for a plane wave and a spherical wave. In the case of spherical waves, the point sources are located either inside or outside the scatterer. These relations are used to study the inverse scattering problems.
A new simple mathematical method has been proposed to predict rock stress around a noncircular tunnel and the method is calibrated and validated with a numerical model. It can be found that the tunnel shapes and polar angles affect the applicable zone of the theoretical model significantly and the applicable zone of a rectangular tunnel was obtained using this method. The method can be used to predict the values of the concentrated stress, and to analyze the change rate of rock stress and back to calculate the mechanical boundary condition in the applicable zone. The results of the stress change rate indicate that the horizontal stress is negatively related to the vertical boundary load and positively related to the horizontal boundary load. The vertical stress is negatively related to the horizontal boundary load and positively related to the vertical boundary load. These findings can be used to explain the evolution of the vertical increment in stress obtained with field-based borehole stress monitoring.
In this paper, a Chebyshev-collocation spectral method is developed for Volterra integral equations (VIEs) of second kind with weakly singular kernel. We first change the equation into an equivalent VIE so that the solution of the new equation possesses better regularity. The integral term in the resulting VIE is approximated by Gauss quadrature formulas using the Chebyshev collocation points. The convergence analysis of this method is based on the Lebesgue constant for the Lagrange interpolation polynomials, approximation theory for orthogonal polynomials, and the operator theory. The spectral rate of convergence for the proposed method is established in the L∞-norm and weighted L2-norm. Numerical results are presented to demonstrate the effectiveness of the proposed method.