We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A semilattice tree T with 0 is slim if there is a chain C with 0 so that the lattices θ (T) and θ(C) of semilattice congruences are isomorphic. This paper establishes elementary consequences of slimness and uses simple constructive techniques to show certain small trees slim. If T is the union of at most countably many branches, each of which has a maximum or a countable cotinal subset, then T is slim. For trees with enough maximals slimness is equivalent with not having any uncountable anti-chains. If a tree T has a countable cofinal subset then T is slim. Thus finitary trees are slim.
Epstein and Horn, in their paper ‘Chain based lattices’, characterized P1-lattices, and P2-lattices in terms of their prime ideals. But no such prime ideal characterization for P0-lattices was given. Our main aim in this paper is to characterize P0-lattices in terms of their prime ideals. We also give a necessary and sufficient condition for a P-algebra to be a P0-lattice (and hence a P2-lattice).
If L is any semilattice, let TL denote the Munn semigroup of L, and Aut (L) the automorphism group of L.
We show that every semilattice L can be isomorphically embedded as a convex subsemilattice in a semilattice L' which has a transitive automorphism group in such a way that (i) every partial isomorphism α of L can be extended to an automorphism of L', (ii) every partial isomorphism: α: eL → fL of L can be extended to a partial isomorphism αL′: eL′ → fL′ of L′ such that TL → TL′, α → αL′ embeds TL' isomorphically in TL′, (iii) every automorphism γ of L can be extended to an automorphism γL′ of L′ such that Aut (L) → Aut (L′), γ → γL embeds Aut (L) isomorphically in Aut (L′).
Let δ be a root system and let V be the Hahn group of real-valued functions on δ Then δ can be order-embedded into P(δ), the root system of prime l-ideals of V. In this note we identify P(δ) in terms of δ without explicit reference to V, up to the convex subgroup structure of the additive groups of real closed η1-fields. In particular, we characterize the minimal prime 1-ideals of V in terms of δ by an ultrafilter construction which generalizes the well-known method when δ is trivially ordered.
Let P be a partially-ordered set in which every two elements have a common lower bound. It is proved that there exists a lower semilattice L whose elements are labelled with elements of P in such a way that (i) comparable elements of L are labelled with elements of P in the same strict order relation; (ii) each element of P is used as a label and every two comparable elements of P are labels of comparable elements of L; (iii) for any two elements of L with the same label, there is a label-preserving isomorphism between the corresponding principal ideals. Such a structure is called a full, uniform P-labelled semilattice.
An attempt is made to extend the theory of extensions of partial orders in groups to strict partially ordered N-groups. Necessary and sufficient conditions, for a strict partial order of an N-group to have a strict full extension, and for a strict partial order of an N-group to be an intersection of strict full orders, are obtained when the partially ordered near-ring N and the N-group G satisfy the condition (− x) n = − xn for all elements x in G and positive elements n in N.
A totally ordered set (and corresponding order-type) is said to be rigid if it is not similar to any proper initial segment of itself. The class of rigid ordertypes is closed under addition and multiplication, satisfies both cancellation laws from the left, and admits a partial ordering that is an extension of the ordering of the ordinals. Under this ordering, limits of increasing sequences of rigid order-types are well defined, rigid and satisfy the usual limit laws concerning addition and multiplication. A decomposition theorem is obtained, and is used to prove a characterization theorem on rigid order-types that are additively prime. Wherever possible, use of the Axiom of Choice is eschewed, and theorems whose proofs depend upon Choice are marked.