We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this work we investigate the Weihrauch degree of the problem Decreasing Sequence (
$\mathsf {DS}$
) of finding an infinite descending sequence through a given ill-founded linear order, which is shared by the problem Bad Sequence (
$\mathsf {BS}$
) of finding a bad sequence through a given non-well quasi-order. We show that
$\mathsf {DS}$
, despite being hard to solve (it has computable inputs with no hyperarithmetic solution), is rather weak in terms of uniform computational strength. To make the latter precise, we introduce the notion of the deterministic part of a Weihrauch degree. We then generalize
$\mathsf {DS}$
and
$\mathsf {BS}$
by considering
$\boldsymbol {\Gamma }$
-presented orders, where
$\boldsymbol {\Gamma }$
is a Borel pointclass or
$\boldsymbol {\Delta }^1_1$
,
$\boldsymbol {\Sigma }^1_1$
,
$\boldsymbol {\Pi }^1_1$
. We study the obtained
$\mathsf {DS}$
-hierarchy and
$\mathsf {BS}$
-hierarchy of problems in comparison with the (effective) Baire hierarchy and show that they do not collapse at any finite level.
We prove that the Weihrauch lattice can be transformed into a Brouwer algebra by the consecutive application of two closure operators in the appropriate order: first completion and then parallelization. The closure operator of completion is a new closure operator that we introduce. It transforms any problem into a total problem on the completion of the respective types, where we allow any value outside of the original domain of the problem. This closure operator is of interest by itself, as it generates a total version of Weihrauch reducibility that is defined like the usual version of Weihrauch reducibility, but in terms of total realizers. From a logical perspective completion can be seen as a way to make problems independent of their premises. Alongside with the completion operator and total Weihrauch reducibility we need to study precomplete representations that are required to describe these concepts. In order to show that the parallelized total Weihrauch lattice forms a Brouwer algebra, we introduce a new multiplicative version of an implication. While the parallelized total Weihrauch lattice forms a Brouwer algebra with this implication, the total Weihrauch lattice fails to be a model of intuitionistic linear logic in two different ways. In order to pinpoint the algebraic reasons for this failure, we introduce the concept of a Weihrauch algebra that allows us to formulate the failure in precise and neat terms. Finally, we show that the Medvedev Brouwer algebra can be embedded into our Brouwer algebra, which also implies that the theory of our Brouwer algebra is Jankov logic.
Let $\mathcal M=(M,<,\ldots)$ be a linearly ordered first-order structure and T its complete theory. We investigate conditions for T that could guarantee that $\mathcal M$ is not much more complex than some colored orders (linear orders with added unary predicates). Motivated by Rubin’s work [5], we label three conditions expressing properties of types of T and/or automorphisms of models of T. We prove several results which indicate the “geometric” simplicity of definable sets in models of theories satisfying these conditions. For example, we prove that the strongest condition characterizes, up to definitional equivalence (inter-definability), theories of colored orders expanded by equivalence relations with convex classes.
For every n, we evaluate the smallest k such that the congruence inclusion
$\alpha (\beta \circ _n \gamma ) \subseteq \alpha \beta \circ _{k} \alpha \gamma $
holds in a variety of reducts of lattices introduced by K. Baker. We also study varieties with a near-unanimity term and discuss identities dealing with reflexive and admissible relations.
If ${\mathfrak {F}}$ is a type-definable family of commensurable subsets, subgroups or subvector spaces in a metric structure, then there is an invariant subset, subgroup or subvector space commensurable with ${\mathfrak {F}}$. This in particular applies to type-definable or hyper-definable objects in a classical first-order structure.
Let
$\to $
be a continuous
$\protect \operatorname {\mathrm {[0,1]}}$
-valued function defined on the unit square
$\protect \operatorname {\mathrm {[0,1]}}^2$
, having the following properties: (i)
$x\to (y\to z)= y\to (x\to z)$
and (ii)
$x\to y=1 $
iff
$x\leq y$
. Let
$\neg x=x\to 0$
. Then the algebra
$W=(\protect \operatorname {\mathrm {[0,1]}},1,\neg ,\to )$
satisfies the time-honored Łukasiewicz axioms of his infinite-valued calculus. Let
$x\to _{\text {\tiny \L }}y=\min (1,1-x+y)$
and
$\neg _{\text {\tiny \L }}x=x\to _{\text {\tiny \L }} 0 =1-x.$
Then there is precisely one isomorphism
$\phi $
of W onto the standard Wajsberg algebra
$W_{\text {\tiny \L }}= (\protect \operatorname {\mathrm {[0,1]}},1,\neg _{\text {\tiny \L }},\to _{\text {\tiny \L }})$
. Thus
$x\to y= \phi ^{-1}(\min (1,1-\phi (x)+\phi (y)))$
.
A slope r is called a left orderable slope of a knot
$K \subset S^3$
if the 3-manifold obtained by r-surgery along K has left orderable fundamental group. Consider double twist knots
$C(2m, \pm 2n)$
and
$C(2m+1, -2n)$
in the Conway notation, where
$m \ge 1$
and
$n \ge 2$
are integers. By using continuous families of hyperbolic
${\mathrm {SL}}_2(\mathbb {R})$
-representations of knot groups, it was shown in [8, 16] that any slope in
$(-4n, 4m)$
(resp.
$ [0, \max \{4m, 4n\})$
) is a left orderable slope of
$C(2m, 2n)$
(resp.
$C(2m, - 2n)$
) and in [6] that any slope in
$(-4n,0]$
is a left orderable slope of
$C(2m+1,-2n)$
. However, the proofs of these results are incomplete, since the continuity of the families of representations was not proved. In this paper, we complete these proofs, and, moreover, we show that any slope in
$(-4n, 4m)$
is a left orderable slope of
$C(2m+1,-2n)$
detected by hyperbolic
${\mathrm {SL}}_2(\mathbb {R})$
-representations of the knot group.
Several discrete geometry problems are equivalent to estimating the size of the largest homogeneous sets in graphs that happen to be the union of few comparability graphs. An important observation for such results is that if G is an n-vertex graph that is the union of r comparability (or more generally, perfect) graphs, then either G or its complement contains a clique of size
$n^{1/(r+1)}$
.
This bound is known to be tight for
$r=1$
. The question whether it is optimal for
$r\ge 2$
was studied by Dumitrescu and Tóth. We prove that it is essentially best possible for
$r=2$
, as well: we introduce a probabilistic construction of two comparability graphs on n vertices, whose union contains no clique or independent set of size
$n^{1/3+o(1)}$
.
Using similar ideas, we can also construct a graph G that is the union of r comparability graphs, and neither G nor its complement contain a complete bipartite graph with parts of size
$cn/{(log n)^r}$
. With this, we improve a result of Fox and Pach.
We prove that Cuntz semigroups of C*-algebras satisfy Edwards' condition with respect to every quasitrace. This condition is a key ingredient in the study of the realization problem of functions on the cone of quasitraces as ranks of positive elements. In the course of our investigation, we identify additional structure of the Cuntz semigroup of an arbitrary C*-algebra and of the cone of quasitraces.
We construct total orders on the vertex set of an oriented tree. The orders are based only on up-down counts at the interior vertices and the edges along the unique geodesic from a given vertex to another.
As an application, we provide a short proof (modulo Bass–Serre theory) of Vinogradov’s result that the free product of left-orderable groups is left-orderable.
Let $p$ be an odd prime. The unary algebra consisting of the dihedral group of order $2p$, acting on itself by left translation, is a minimal congruence lattice representation of $\mathbb{M}_{p+1}$.
First, we generalize the definition of a locally compact topology given by Paterson and Welch for a sequence of locally compact spaces to the case where the underlying spaces are $T_{1}$ and sober. We then consider a certain semilattice of basic open sets for this topology on the space of all paths on a graph and impose relations motivated by the definitions of graph C*-algebra in order to recover the boundary path space of a graph. This is done using techniques of pointless topology. Finally, we generalize the results to the case of topological graphs.
Let $X$ be a nonempty set and ${\mathcal{P}}(X)$ the power set of $X$. The aim of this paper is to identify the unital subrings of ${\mathcal{P}}(X)$ and to compute its cardinality when it is finite. It is proved that any topology $\unicode[STIX]{x1D70F}$ on $X$ such that $\unicode[STIX]{x1D70F}=\unicode[STIX]{x1D70F}^{c}$, where $\unicode[STIX]{x1D70F}^{c}=\{U^{c}\mid U\in \unicode[STIX]{x1D70F}\}$, is a unital subring of ${\mathcal{P}}(X)$. It is also shown that $X$ is finite if and only if any unital subring of ${\mathcal{P}}(X)$ is a topology $\unicode[STIX]{x1D70F}$ on $X$ such that $\unicode[STIX]{x1D70F}=\unicode[STIX]{x1D70F}^{c}$ if and only if the set of unital subrings of ${\mathcal{P}}(X)$ is finite. As a consequence, if $X$ is finite with cardinality $n\geq 2$, then the number of unital subrings of ${\mathcal{P}}(X)$ is equal to the $n$th Bell number and the supremum of the lengths of chains of unital subalgebras of ${\mathcal{P}}(X)$ is equal to $n-1$.
Let $X$ be a topological space. We consider certain generalized configuration spaces of points on $X$, obtained from the cartesian product $X^{n}$ by removing some intersections of diagonals. We give a systematic framework for studying the cohomology of such spaces using what we call ‘twisted commutative dg algebra models’ for the cochains on $X$. Suppose that $X$ is a ‘nice’ topological space, $R$ is any commutative ring, $H_{c}^{\bullet }(X,R)\rightarrow H^{\bullet }(X,R)$ is the zero map, and that $H_{c}^{\bullet }(X,R)$ is a projective $R$-module. We prove that the compact support cohomology of any generalized configuration space of points on $X$ depends only on the graded $R$-module $H_{c}^{\bullet }(X,R)$. This generalizes a theorem of Arabia.
Every left-invariant ordering of a group is either discrete, meaning there is a least element greater than the identity, or dense. Corresponding to this dichotomy, the spaces of left, Conradian, and bi-orderings of a group are naturally partitioned into two subsets. This note investigates the structure of this partition, specifically the set of dense orderings of a group and its closure within the space of orderings. We show that for bi-orderable groups, this closure will always contain the space of Conradian orderings—and often much more. In particular, the closure of the set of dense orderings of the free group is the entire space of left-orderings.
We characterize the topological spaces of minimum cardinality which are weakly contractible but not contractible. This is equivalent to finding the non-dismantlable posets of minimum cardinality such that the geometric realization of their order complexes are contractible. Specifically, we prove that all weakly contractible topological spaces with fewer than nine points are contractible. We also prove that there exist (up to homeomorphism) exactly two topological spaces of nine points which are weakly contractible but not contractible.
We introduce a notion of ‘hereditarily antisymmetric’ operator algebras and prove a structure theorem for them in finite dimensions. We also characterize those operator algebras in finite dimensions which can be made upper triangular and prove matrix analogs of the theorems of Dilworth and Mirsky for finite posets. Some partial results are obtained in the infinite dimensional case.
This paper concerns HH-relations in the lattices P(M) of all projections of W*-algebras M. If M is a finite algebra, all these relations are generated by trails in P(M). If M is an infinite countably decomposable factor, they are either generated by trails or associated with them.
A ring is called right annelidan if the right annihilator of any subset of the ring is comparable with every other right ideal. In this paper we develop the connections between this class of rings and the classes of right Bézout rings and rings whose right ideals form a distributive lattice. We obtain results on localization of right annelidan rings at prime ideals, chain conditions that entail left-right symmetry of the annelidan condition, and construction of completely prime ideals.