To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For any given subgroup H of a finite group G, the Quillen poset ${\mathcal {A}}_p(G)$ of nontrivial elementary abelian p-subgroups is obtained from ${\mathcal {A}}_p(H)$ by attaching elements via their centralisers in H. We exploit this idea to study Quillen’s conjecture, which asserts that if ${\mathcal {A}}_p(G)$ is contractible then G has a nontrivial normal p-subgroup. We prove that the original conjecture is equivalent to the ${{\mathbb {Z}}}$-acyclic version of the conjecture (obtained by replacing ‘contractible’ by ‘${{\mathbb {Z}}}$-acyclic’). We also work with the ${\mathbb {Q}}$-acyclic (strong) version of the conjecture, reducing its study to extensions of direct products of simple groups of p-rank at least $2$. This allows us to extend results of Aschbacher and Smith and to establish the strong conjecture for groups of p-rank at most $4$.
We prove that the annihilating-ideal graph of a commutative semigroup with unity is, in general, not weakly perfect. This settles the conjecture of DeMeyer and Schneider [‘The annihilating-ideal graph of commutative semigroups’, J. Algebra469 (2017), 402–420]. Further, we prove that the zero-divisor graphs of semigroups with respect to semiprime ideals are weakly perfect. This enables us to produce a large class of examples of weakly perfect zero-divisor graphs from a fixed semigroup by choosing different semiprime ideals.
We investigate the Tukey order in the class of $F_{\sigma }$ ideals of subsets of $\omega $. We show that no nontrivial $F_{\sigma }$ ideal is Tukey below a $G_{\delta }$ ideal of compact sets. We introduce the notions of flat ideals and gradually flat ideals. We prove a dichotomy theorem for flat ideals isolating gradual flatness as the side of the dichotomy that is structurally good. We give diverse characterizations of gradual flatness among flat ideals using Tukey reductions and games. For example, we show that gradually flat ideals are precisely those flat ideals that are Tukey below the ideal of density zero sets.
Let G be a group and A a set equipped with a collection of finitary operations. We study cellular automata $$\tau :{A^G} \to {A^G}$$ that preserve the operations AG of induced componentwise from the operations of A. We show τ that is an endomorphism of AG if and only if its local function is a homomorphism. When A is entropic (i.e. all finitary operations are homomorphisms), we establish that the set EndCA(G;A), consisting of all such endomorphic cellular automata, is isomorphic to the direct limit of Hom(AS, A), where S runs among all finite subsets of G. In particular, when A is an R-module, we show that EndCA(G;A) is isomorphic to the group algebra $${\rm{End}}(A)[G]$$. Moreover, when A is a finite Boolean algebra, we establish that the number of endomorphic cellular automata over AG admitting a memory set S is precisely $${(k|S|)^k}$$, where k is the number of atoms of A.
We present a Zermelo–Fraenkel ($\textbf {ZF}$) consistency result regarding bi-orderability of groups. A classical consequence of the ultrafilter lemma is that a group is bi-orderable if and only if it is locally bi-orderable. We show that there exists a model of $\textbf {ZF}$ plus dependent choice in which there is a group which is locally free (ergo locally bi-orderable) and not bi-orderable, and the group can be given a total order. The model also includes a torsion-free abelian group which is not bi-orderable but can be given a total order.
We determine the reflexivity index of some closed set lattices by constructing maps relative to irrational rotations. For example, various nests of closed balls and some topological spaces, such as even-dimensional spheres and a wedge of two circles, have reflexivity index 2. We also show that a connected double of spheres has reflexivity index at most 2.
We investigate the structure of ultrafilters on Boolean algebras in the framework of Tukey reducibility. In particular, this paper provides several techniques to construct ultrafilters which are not Tukey maximal. Furthermore, we connect this analysis with a cardinal invariant of Boolean algebras, the ultrafilter number, and prove consistency results concerning its possible values on Cohen and random algebras.
In this work we investigate the Weihrauch degree of the problem Decreasing Sequence ($\mathsf {DS}$) of finding an infinite descending sequence through a given ill-founded linear order, which is shared by the problem Bad Sequence ($\mathsf {BS}$) of finding a bad sequence through a given non-well quasi-order. We show that $\mathsf {DS}$, despite being hard to solve (it has computable inputs with no hyperarithmetic solution), is rather weak in terms of uniform computational strength. To make the latter precise, we introduce the notion of the deterministic part of a Weihrauch degree. We then generalize $\mathsf {DS}$ and $\mathsf {BS}$ by considering $\boldsymbol {\Gamma }$-presented orders, where $\boldsymbol {\Gamma }$ is a Borel pointclass or $\boldsymbol {\Delta }^1_1$, $\boldsymbol {\Sigma }^1_1$, $\boldsymbol {\Pi }^1_1$. We study the obtained $\mathsf {DS}$-hierarchy and $\mathsf {BS}$-hierarchy of problems in comparison with the (effective) Baire hierarchy and show that they do not collapse at any finite level.
We prove that the Weihrauch lattice can be transformed into a Brouwer algebra by the consecutive application of two closure operators in the appropriate order: first completion and then parallelization. The closure operator of completion is a new closure operator that we introduce. It transforms any problem into a total problem on the completion of the respective types, where we allow any value outside of the original domain of the problem. This closure operator is of interest by itself, as it generates a total version of Weihrauch reducibility that is defined like the usual version of Weihrauch reducibility, but in terms of total realizers. From a logical perspective completion can be seen as a way to make problems independent of their premises. Alongside with the completion operator and total Weihrauch reducibility we need to study precomplete representations that are required to describe these concepts. In order to show that the parallelized total Weihrauch lattice forms a Brouwer algebra, we introduce a new multiplicative version of an implication. While the parallelized total Weihrauch lattice forms a Brouwer algebra with this implication, the total Weihrauch lattice fails to be a model of intuitionistic linear logic in two different ways. In order to pinpoint the algebraic reasons for this failure, we introduce the concept of a Weihrauch algebra that allows us to formulate the failure in precise and neat terms. Finally, we show that the Medvedev Brouwer algebra can be embedded into our Brouwer algebra, which also implies that the theory of our Brouwer algebra is Jankov logic.
Let $\mathcal M=(M,<,\ldots)$ be a linearly ordered first-order structure and T its complete theory. We investigate conditions for T that could guarantee that $\mathcal M$ is not much more complex than some colored orders (linear orders with added unary predicates). Motivated by Rubin’s work [5], we label three conditions expressing properties of types of T and/or automorphisms of models of T. We prove several results which indicate the “geometric” simplicity of definable sets in models of theories satisfying these conditions. For example, we prove that the strongest condition characterizes, up to definitional equivalence (inter-definability), theories of colored orders expanded by equivalence relations with convex classes.
For every n, we evaluate the smallest k such that the congruence inclusion $\alpha (\beta \circ _n \gamma ) \subseteq \alpha \beta \circ _{k} \alpha \gamma $ holds in a variety of reducts of lattices introduced by K. Baker. We also study varieties with a near-unanimity term and discuss identities dealing with reflexive and admissible relations.
If ${\mathfrak {F}}$ is a type-definable family of commensurable subsets, subgroups or subvector spaces in a metric structure, then there is an invariant subset, subgroup or subvector space commensurable with ${\mathfrak {F}}$. This in particular applies to type-definable or hyper-definable objects in a classical first-order structure.
Let $\to $ be a continuous $\protect \operatorname {\mathrm {[0,1]}}$-valued function defined on the unit square $\protect \operatorname {\mathrm {[0,1]}}^2$, having the following properties: (i) $x\to (y\to z)= y\to (x\to z)$ and (ii) $x\to y=1 $ iff $x\leq y$. Let $\neg x=x\to 0$. Then the algebra $W=(\protect \operatorname {\mathrm {[0,1]}},1,\neg ,\to )$ satisfies the time-honored Łukasiewicz axioms of his infinite-valued calculus. Let $x\to _{\text {\tiny \L }}y=\min (1,1-x+y)$ and $\neg _{\text {\tiny \L }}x=x\to _{\text {\tiny \L }} 0 =1-x.$ Then there is precisely one isomorphism $\phi $ of W onto the standard Wajsberg algebra $W_{\text {\tiny \L }}= (\protect \operatorname {\mathrm {[0,1]}},1,\neg _{\text {\tiny \L }},\to _{\text {\tiny \L }})$. Thus $x\to y= \phi ^{-1}(\min (1,1-\phi (x)+\phi (y)))$.
A slope r is called a left orderable slope of a knot $K \subset S^3$ if the 3-manifold obtained by r-surgery along K has left orderable fundamental group. Consider double twist knots $C(2m, \pm 2n)$ and $C(2m+1, -2n)$ in the Conway notation, where $m \ge 1$ and $n \ge 2$ are integers. By using continuous families of hyperbolic ${\mathrm {SL}}_2(\mathbb {R})$-representations of knot groups, it was shown in [8, 16] that any slope in $(-4n, 4m)$ (resp. $ [0, \max \{4m, 4n\})$) is a left orderable slope of $C(2m, 2n)$ (resp. $C(2m, - 2n)$) and in [6] that any slope in $(-4n,0]$ is a left orderable slope of $C(2m+1,-2n)$. However, the proofs of these results are incomplete, since the continuity of the families of representations was not proved. In this paper, we complete these proofs, and, moreover, we show that any slope in $(-4n, 4m)$ is a left orderable slope of $C(2m+1,-2n)$ detected by hyperbolic ${\mathrm {SL}}_2(\mathbb {R})$-representations of the knot group.
Several discrete geometry problems are equivalent to estimating the size of the largest homogeneous sets in graphs that happen to be the union of few comparability graphs. An important observation for such results is that if G is an n-vertex graph that is the union of r comparability (or more generally, perfect) graphs, then either G or its complement contains a clique of size $n^{1/(r+1)}$.
This bound is known to be tight for $r=1$. The question whether it is optimal for $r\ge 2$ was studied by Dumitrescu and Tóth. We prove that it is essentially best possible for $r=2$, as well: we introduce a probabilistic construction of two comparability graphs on n vertices, whose union contains no clique or independent set of size $n^{1/3+o(1)}$.
Using similar ideas, we can also construct a graph G that is the union of r comparability graphs, and neither G nor its complement contain a complete bipartite graph with parts of size $cn/{(log n)^r}$. With this, we improve a result of Fox and Pach.
We prove that Cuntz semigroups of C*-algebras satisfy Edwards' condition with respect to every quasitrace. This condition is a key ingredient in the study of the realization problem of functions on the cone of quasitraces as ranks of positive elements. In the course of our investigation, we identify additional structure of the Cuntz semigroup of an arbitrary C*-algebra and of the cone of quasitraces.
We construct total orders on the vertex set of an oriented tree. The orders are based only on up-down counts at the interior vertices and the edges along the unique geodesic from a given vertex to another.
As an application, we provide a short proof (modulo Bass–Serre theory) of Vinogradov’s result that the free product of left-orderable groups is left-orderable.
Let $p$ be an odd prime. The unary algebra consisting of the dihedral group of order $2p$, acting on itself by left translation, is a minimal congruence lattice representation of $\mathbb{M}_{p+1}$.
First, we generalize the definition of a locally compact topology given by Paterson and Welch for a sequence of locally compact spaces to the case where the underlying spaces are $T_{1}$ and sober. We then consider a certain semilattice of basic open sets for this topology on the space of all paths on a graph and impose relations motivated by the definitions of graph C*-algebra in order to recover the boundary path space of a graph. This is done using techniques of pointless topology. Finally, we generalize the results to the case of topological graphs.