To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $X$ be a nonempty set and ${\mathcal{P}}(X)$ the power set of $X$. The aim of this paper is to identify the unital subrings of ${\mathcal{P}}(X)$ and to compute its cardinality when it is finite. It is proved that any topology $\unicode[STIX]{x1D70F}$ on $X$ such that $\unicode[STIX]{x1D70F}=\unicode[STIX]{x1D70F}^{c}$, where $\unicode[STIX]{x1D70F}^{c}=\{U^{c}\mid U\in \unicode[STIX]{x1D70F}\}$, is a unital subring of ${\mathcal{P}}(X)$. It is also shown that $X$ is finite if and only if any unital subring of ${\mathcal{P}}(X)$ is a topology $\unicode[STIX]{x1D70F}$ on $X$ such that $\unicode[STIX]{x1D70F}=\unicode[STIX]{x1D70F}^{c}$ if and only if the set of unital subrings of ${\mathcal{P}}(X)$ is finite. As a consequence, if $X$ is finite with cardinality $n\geq 2$, then the number of unital subrings of ${\mathcal{P}}(X)$ is equal to the $n$th Bell number and the supremum of the lengths of chains of unital subalgebras of ${\mathcal{P}}(X)$ is equal to $n-1$.
Let $X$ be a topological space. We consider certain generalized configuration spaces of points on $X$, obtained from the cartesian product $X^{n}$ by removing some intersections of diagonals. We give a systematic framework for studying the cohomology of such spaces using what we call ‘twisted commutative dg algebra models’ for the cochains on $X$. Suppose that $X$ is a ‘nice’ topological space, $R$ is any commutative ring, $H_{c}^{\bullet }(X,R)\rightarrow H^{\bullet }(X,R)$ is the zero map, and that $H_{c}^{\bullet }(X,R)$ is a projective $R$-module. We prove that the compact support cohomology of any generalized configuration space of points on $X$ depends only on the graded $R$-module $H_{c}^{\bullet }(X,R)$. This generalizes a theorem of Arabia.
Every left-invariant ordering of a group is either discrete, meaning there is a least element greater than the identity, or dense. Corresponding to this dichotomy, the spaces of left, Conradian, and bi-orderings of a group are naturally partitioned into two subsets. This note investigates the structure of this partition, specifically the set of dense orderings of a group and its closure within the space of orderings. We show that for bi-orderable groups, this closure will always contain the space of Conradian orderings—and often much more. In particular, the closure of the set of dense orderings of the free group is the entire space of left-orderings.
We characterize the topological spaces of minimum cardinality which are weakly contractible but not contractible. This is equivalent to finding the non-dismantlable posets of minimum cardinality such that the geometric realization of their order complexes are contractible. Specifically, we prove that all weakly contractible topological spaces with fewer than nine points are contractible. We also prove that there exist (up to homeomorphism) exactly two topological spaces of nine points which are weakly contractible but not contractible.
We introduce a notion of ‘hereditarily antisymmetric’ operator algebras and prove a structure theorem for them in finite dimensions. We also characterize those operator algebras in finite dimensions which can be made upper triangular and prove matrix analogs of the theorems of Dilworth and Mirsky for finite posets. Some partial results are obtained in the infinite dimensional case.
This paper concerns HH-relations in the lattices P(M) of all projections of W*-algebras M. If M is a finite algebra, all these relations are generated by trails in P(M). If M is an infinite countably decomposable factor, they are either generated by trails or associated with them.
A ring is called right annelidan if the right annihilator of any subset of the ring is comparable with every other right ideal. In this paper we develop the connections between this class of rings and the classes of right Bézout rings and rings whose right ideals form a distributive lattice. We obtain results on localization of right annelidan rings at prime ideals, chain conditions that entail left-right symmetry of the annelidan condition, and construction of completely prime ideals.
By previous work of Giordano and the author, ergodic actions of $\mathbf{Z}$ (and other discrete groups) are completely classified measure-theoretically by their dimension space, a construction analogous to the dimension group used in $\text{C}^{\ast }$-algebras and topological dynamics. Here we investigate how far from approximately transitive (AT) actions can be that derive from circulant (and related) matrices. It turns out not very: although non-AT actions can arise from this method of construction, under very modest additional conditions, approximate transitivity arises. KIn addition, if we drop the positivity requirement in the isomorphism of dimension spaces, then all these ergodic actions satisfy an analogue of AT. Many examples are provided.
In this paper we integrate two strands of the literature on stability of general state Markov chains: conventional, total-variation-based results and more recent order-theoretic results. First we introduce a complete metric over Borel probability measures based on ‘partial’ stochastic dominance. We then show that many conventional results framed in the setting of total variation distance have natural generalizations to the partially ordered setting when this metric is adopted.
We define a natural lattice structure on all subsets of a finite root system that extends the weak order on the elements of the corresponding Coxeter group. For crystallographic root systems, we show that the subposet of this lattice induced by antisymmetric closed subsets of roots is again a lattice. We then study further subposets of this lattice that naturally correspond to the elements, the intervals, and the faces of the permutahedron and the generalized associahedra of the corresponding Weyl group. These results extend to arbitrary finite crystallographic root systems the recent results of G. Chatel, V. Pilaud, and V. Pons on the weak order on posets and its induced subposets.
This paper explores the structure groups G(X,r) of finite non-degenerate set-theoretic solutions (X,r) to the Yang–Baxter equation. Namely, we construct a finite quotient $\overline {G}_{(X,r)}$ of G(X,r), generalizing the Coxeter-like groups introduced by Dehornoy for involutive solutions. This yields a finitary setting for testing injectivity: if X injects into G(X,r), then it also injects into $\overline {G}_{(X,r)}$. We shrink every solution to an injective one with the same structure group, and compute the rank of the abelianization of G(X,r). We show that multipermutation solutions are the only involutive solutions with diffuse structure groups; that only free abelian structure groups are bi-orderable; and that for the structure group of a self-distributive solution, the following conditions are equivalent: bi-orderable, left-orderable, abelian, free abelian and torsion free.
This paper provides some evidence for conjectural relations between extensions of (right) weak order on Coxeter groups, closure operators on root systems, and Bruhat order. The conjecture focused upon here refines an earlier question as to whether the set of initial sections of reflection orders, ordered by inclusion, forms a complete lattice. Meet and join in weak order are described in terms of a suitable closure operator. Galois connections are defined from the power set of $W$ to itself, under which maximal subgroups of certain groupoids correspond to certain complete meet subsemilattices of weak order. An analogue of weak order for standard parabolic subsets of any rank of the root system is defined, reducing to the usual weak order in rank zero, and having some analogous properties in rank one (and conjecturally in general).
A new class of functions with a unique identification minor is introduced: functions determined by content and singletons. Relationships between this class and other known classes of functions with a unique identification minor are investigated. Some properties of functions determined by content and singletons are established, especially concerning invariance groups and similarity.
An EMV-algebra resembles an MV-algebra in which a top element is not guaranteed. For $\unicode[STIX]{x1D70E}$-complete $EMV$-algebras, we prove an analogue of the Loomis–Sikorski theorem showing that every $\unicode[STIX]{x1D70E}$-complete $EMV$-algebra is a $\unicode[STIX]{x1D70E}$-homomorphic image of an $EMV$-tribe of fuzzy sets where all algebraic operations are defined by points. To prove it, some topological properties of the state-morphism space and the space of maximal ideals are established.
This paper studies the combinatorics of lattice congruences of the weak order on a finite Weyl group $W$, using representation theory of the corresponding preprojective algebra $\unicode[STIX]{x1D6F1}$. Natural bijections are constructed between important objects including join-irreducible congruences, join-irreducible (respectively, meet-irreducible) elements of $W$, indecomposable $\unicode[STIX]{x1D70F}$-rigid (respectively, $\unicode[STIX]{x1D70F}^{-}$-rigid) modules and layers of $\unicode[STIX]{x1D6F1}$. The lattice-theoretically natural labelling of the Hasse quiver by join-irreducible elements of $W$ is shown to coincide with the algebraically natural labelling by layers of $\unicode[STIX]{x1D6F1}$. We show that layers of $\unicode[STIX]{x1D6F1}$ are nothing but bricks (or equivalently stones, or 2-spherical modules). The forcing order on join-irreducible elements of $W$ (arising from the study of lattice congruences) is described algebraically in terms of the doubleton extension order. We give a combinatorial description of indecomposable $\unicode[STIX]{x1D70F}^{-}$-rigid modules for type $A$ and $D$.
For a C*-algebra A, determining the Cuntz semigroup Cu(A ⊗) in terms of Cu(A) is an important problem, which we approach from the point of view of semigroup tensor products in the category of abstract Cuntz semigroups by analysing the passage of significant properties from Cu(A) to Cu(A)⊗Cu Cu(). We describe the effect of the natural map Cu(A) → Cu(A)⊗Cu Cu() in the order of Cu(A), and show that if A has real rank 0 and no elementary subquotients, Cu(A)⊗Cu Cu() enjoys the corresponding property of having a dense set of (equivalence classes of) projections. In the simple, non-elementary, real rank 0 and stable rank 1 situation, our investigations lead us to identify almost unperforation for projections with the fact that tensoring with is inert at the level of the Cuntz semigroup.
We provide an equivariant extension of the bivariant Cuntz semigroup introduced in previous work for the case of compact group actions over C*-algebras. Its functoriality properties are explored, and some well-known classification results are retrieved. Connections with crossed products are investigated, and a concrete presentation of equivariant Cuntz homology is provided. The theory that is here developed can be used to define the equivariant Cuntz semigroup. We show that the object thus obtained coincides with the one recently proposed by Gardella [‘Regularity properties and Rokhlin dimension for compact group actions’, Houston J. Math.43(3) (2017), 861–889], and we complement their work by providing an open projection picture of it.
We show that any regular pseudocomplemented Kleene algebra defined on an algebraic lattice is isomorphic to a rough set Kleene algebra determined by a tolerance induced by an irredundant covering.
A function $f:X\rightarrow X$ determines a topology $P(f)$ on $X$ by taking the closed sets to be those sets $A\subseteq X$ with $f(A)\subseteq A$. The topological space $(X,P(f))$ is called a functionally Alexandroff space. We completely characterise the homogeneous functionally Alexandroff spaces.
In this paper, it is proved that the complement of the zero-divisor graph of a partially ordered set is weakly perfect if it has finite clique number, completely answering the question raised by Joshi and Khiste [‘Complement of the zero divisor graph of a lattice’, Bull. Aust. Math. Soc.89 (2014), 177–190]. As a consequence, the intersection graph of an intersection-closed family of nonempty subsets of a set is weakly perfect if it has finite clique number. These results are applied to annihilating-ideal graphs and intersection graphs of submodules.