To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A random binary search tree grown from the uniformly random permutation of [n] is studied. We analyze the exact and asymptotic counts of vertices by rank, the distance from the set of leaves. The asymptotic fraction ck of vertices of a fixed rank k ≥ 0 is shown to decay exponentially with k. We prove that the ranks of the uniformly random, fixed size sample of vertices are asymptotically independent, each having the distribution {ck}. Notoriously hard to compute, the exact fractions ck have been determined for k ≤ 3 only. We present a shortcut enabling us to compute c4 and c5 as well; both are ratios of enormous integers, the denominator of c5 being 274 digits long. Prompted by the data, we prove that, in sharp contrast, the largest prime divisor of the denominator of ck is at most 2k+1 + 1. We conjecture that, in fact, the prime divisors of every denominator for k > 1 form a single interval, from 2 to the largest prime not exceeding 2k+1 + 1.
Given a poset $P$ and a standard closure operator $\unicode[STIX]{x1D6E4}:{\wp}(P)\rightarrow {\wp}(P)$, we give a necessary and sufficient condition for the lattice of $\unicode[STIX]{x1D6E4}$-closed sets of ${\wp}(P)$ to be a frame in terms of the recursive construction of the $\unicode[STIX]{x1D6E4}$-closure of sets. We use this condition to show that, given a set ${\mathcal{U}}$ of distinguished joins from $P$, the lattice of ${\mathcal{U}}$-ideals of $P$ fails to be a frame if and only if it fails to be $\unicode[STIX]{x1D70E}$-distributive, with $\unicode[STIX]{x1D70E}$ depending on the cardinalities of sets in ${\mathcal{U}}$. From this we deduce that if a poset has the property that whenever $a\wedge (b\vee c)$ is defined for $a,b,c\in P$ it is necessarily equal to $(a\wedge b)\vee (a\wedge c)$, then it has an $(\unicode[STIX]{x1D714},3)$-representation.
The jaggedness of an order ideal $I$ in a poset $P$ is the number of maximal elements in $I$ plus the number of minimal elements of $P$ not in $I$. A probability distribution on the set of order ideals of $P$ is toggle-symmetric if for every $p\in P$, the probability that $p$ is maximal in $I$ equals the probability that $p$ is minimal not in $I$. In this paper, we prove a formula for the expected jaggedness of an order ideal of $P$ under any toggle-symmetric probability distribution when $P$ is the poset of boxes in a skew Young diagram. Our result extends the main combinatorial theorem of Chan–López–Pflueger–Teixidor [Trans. Amer. Math. Soc., forthcoming. 2015, arXiv:1506.00516], who used an expected jaggedness computation as a key ingredient to prove an algebro-geometric formula; and it has applications to homomesies, in the sense of Propp–Roby, of the antichain cardinality statistic for order ideals in partially ordered sets.
To a pair $P$ and $Q$ of finite posets we attach the toric ring $K[P,Q]$ whose generators are in bijection to the isotone maps from $P$ to $Q$. This class of algebras, called isotonian, are natural generalizations of the so-called Hibi rings. We determine the Krull dimension of these algebras and for particular classes of posets $P$ and $Q$ we show that $K[P,Q]$ is normal and that their defining ideal admits a quadratic Gröbner basis.
We study a natural generalization of the noncrossing relation between pairs of elements in $[n]$ to $k$-tuples in $[n]$ that was first considered by Petersen et al. [J. Algebra324(5) (2010), 951–969]. We give an alternative approach to their result that the flag simplicial complex on $\binom{[n]}{k}$ induced by this relation is a regular, unimodular and flag triangulation of the order polytope of the poset given by the product $[k]\times [n-k]$ of two chains (also called Gelfand–Tsetlin polytope), and that it is the join of a simplex and a sphere (that is, it is a Gorenstein triangulation). We then observe that this already implies the existence of a flag simplicial polytope generalizing the dual associahedron, whose Stanley–Reisner ideal is an initial ideal of the Grassmann–Plücker ideal, while previous constructions of such a polytope did not guarantee flagness nor reduced to the dual associahedron for $k=2$. On our way we provide general results about order polytopes and their triangulations. We call the simplicial complex the noncrossing complex, and the polytope derived from it the dual Grassmann associahedron. We extend results of Petersen et al. [J. Algebra324(5) (2010), 951–969] showing that the noncrossing complex and the Grassmann associahedron naturally reflect the relations between Grassmannians with different parameters, in particular the isomorphism$G_{k,n}\cong G_{n-k,n}$. Moreover, our approach allows us to show that the adjacency graph of the noncrossing complex admits a natural acyclic orientation that allows us to define a Grassmann–Tamari order on maximal noncrossing families. Finally, we look at the precise relation of the noncrossing complex and the weak separability complex of Leclerc and Zelevinsky [Amer. Math. Soc. Transl.181(2) (1998), 85–108]; see also Scott [J. Algebra290(1) (2005), 204–220] among others. We show that the weak separability complex is not only a subcomplex of the noncrossing complex as noted by Petersen et al. [J. Algebra324(5) (2010), 951–969] but actually its cyclically invariant part.
In the 1970s, Feldman and Moore classified separably acting von Neumann algebras containing Cartan maximal abelian self-adjoint subalgebras (MASAs) using measured equivalence relations and 2-cocycles on such equivalence relations. In this paper we give a new classification in terms of extensions of inverse semigroups. Our approach is more algebraic in character and less point-based than that of Feldman and Moore. As an application, we give a restatement of the spectral theorem for bimodules in terms of subsets of inverse semigroups. We also show how our viewpoint leads naturally to a description of maximal subdiagonal algebras.
Skew Boolean algebras for which pairs of elements have natural meets, called intersections, are studied from a universal algebraic perspective. Their lattice of varieties is described and shown to coincide with the lattice of quasi-varieties. Some connections of relevance to arbitrary skew Boolean algebras are also established.
It is shown that, for any field $\mathbb{F}\subseteq \mathbb{R}$, any ordered vector space structure of $\mathbb{F}^{n}$ with Riesz interpolation is given by an inductive limit of a sequence with finite stages $(\mathbb{F}^{n},\mathbb{F}_{\geq 0}^{n})$ (where $n$ does not change). This relates to a conjecture of Effros and Shen, since disproven, which is given by the same statement, except with $\mathbb{F}$ replaced by the integers, $\mathbb{Z}$. Indeed, it shows that although Effros and Shen’s conjecture is false, it is true after tensoring with $\mathbb{Q}$.
We consider a special kind of structure resolvability and irresolvability for measurable spaces and discuss analogues of the criteria for topological resolvability and irresolvability.
It is proved that a quantale is projective if and only if it is isomorphic to a derived tensor quantale over a completely distributive sup-lattice. Furthermore, an intrinsic characterization of projectivity is given in terms of inertial sup-lattices and derivations of quantales.
How many strict local maxima can a real quadratic function on {0, 1}n have? Holzman conjectured a maximum of $\binom{n }{ \lfloor n/2 \rfloor}$. The aim of this paper is to prove this conjecture. Our approach is via a generalization of Sperner's theorem that may be of independent interest.
We characterize those partially ordered sets I for which the canonical maps Mi → colim Mj into colimits of abstract sets are always injective, provided that the transition maps are injective. We also obtain some consequences for colimits of vector spaces.
Higgins [‘The Mitsch order on a semigroup’, Semigroup Forum49 (1994), 261–266] showed that the natural partial orders on a semigroup and its regular subsemigroups coincide. This is why we are interested in the study of the natural partial order on nonregular semigroups. Of particular interest are the nonregular semigroups of linear transformations with lower bounds on the nullity or the co-rank. In this paper, we determine when they exist, characterise the natural partial order on these nonregular semigroups and consider questions of compatibility, minimality and maximality. In addition, we provide many examples associated with our results.
In this paper we shall give characterizations of the closed subsemigroups of a Clifford semigroup. Also, we shall show that the class of all Clifford semigroups satisfies the strong isomorphism property and so is globally determined. Thus the results obtained by Kobayashi [‘Semilattices are globally determined’, Semigroup Forum29 (1984), 217–222] and by Gould and Iskra [‘Globally determined classes of semigroups’ Semigroup Forum28 (1984), 1–11] are generalized.
A semiring is a set $S$ with two binary operations $+ $ and $\cdot $ such that both the additive reduct ${S}_{+ } $ and the multiplicative reduct ${S}_{\bullet } $ are semigroups which satisfy the distributive laws. If $R$ is a ring, then, following Chaptal [‘Anneaux dont le demi-groupe multiplicatif est inverse’, C. R. Acad. Sci. Paris Ser. A–B262 (1966), 274–277], ${R}_{\bullet } $ is a union of groups if and only if ${R}_{\bullet } $ is an inverse semigroup if and only if ${R}_{\bullet } $ is a Clifford semigroup. In Zeleznikow [‘Regular semirings’, Semigroup Forum23 (1981), 119–136], it is proved that if $R$ is a regular ring then ${R}_{\bullet } $ is orthodox if and only if ${R}_{\bullet } $ is a union of groups if and only if ${R}_{\bullet } $ is an inverse semigroup if and only if ${R}_{\bullet } $ is a Clifford semigroup. The latter result, also known as Zeleznikow’s theorem, does not hold in general even for semirings $S$ with ${S}_{+ } $ a semilattice Zeleznikow [‘Regular semirings’, Semigroup Forum23 (1981), 119–136]. The Zeleznikow problem on a certain class of semirings involves finding condition(s) such that Zeleznikow’s theorem holds on that class. The main objective of this paper is to solve the Zeleznikow problem for those semirings $S$ for which ${S}_{+ } $ is a semilattice.
The aim of the present paper is to extend the dualizing object approach to Stone duality to the noncommutative setting of skew Boolean algebras. This continues the study of noncommutative generalizations of different forms of Stone duality initiated in recent papers by Bauer and Cvetko-Vah, Lawson, Lawson and Lenz, Resende, and also the current author. In this paper we construct a series of dual adjunctions between the categories of left-handed skew Boolean algebras and Boolean spaces, the unital versions of which are induced by dualizing objects $\{ 0, 1, \ldots , n+ 1\} $, $n\geq 0$. We describe the categories of Eilenberg-Moore algebras of the monads of the adjunctions and construct easily understood noncommutative reflections of left-handed skew Boolean algebras, where the latter can be faithfully embedded (if $n\geq 1$) in a canonical way. As an application, we answer the question that arose in a recent paper by Leech and Spinks to describe the left adjoint to their ‘twisted product’ functor $\omega $.
A semigroup $S$ is called idempotent-surjective (respectively, regular-surjective) if whenever $\rho $ is a congruence on $S$ and $a\rho $ is idempotent (respectively, regular) in $S/ \rho $, then there is $e\in {E}_{S} \cap a\rho $ (respectively, $r\in \mathrm{Reg} (S)\cap a\rho $), where ${E}_{S} $ (respectively, $\mathrm{Reg} (S)$) denotes the set of all idempotents (respectively, regular elements) of $S$. Moreover, a semigroup $S$ is said to be idempotent-regular-surjective if it is both idempotent-surjective and regular-surjective. We show that any regular congruence on an idempotent-regular-surjective (respectively, regular-surjective) semigroup is uniquely determined by its kernel and trace (respectively, the set of equivalence classes containing idempotents). Finally, we prove that all structurally regular semigroups are idempotent-regular-surjective.
For a semigroup $S$, let ${S}^{1} $ be the semigroup obtained from $S$ by adding a new symbol 1 as its identity if $S$ has no identity; otherwise let ${S}^{1} = S$. Mitsch defined the natural partial order $\leqslant $ on a semigroup $S$ as follows: for $a, b\in S$, $a\leqslant b$ if and only if $a= xb= by$ and $a= ay$ for some $x, y\in {S}^{1} $. In this paper, we characterise the natural partial order on some transformation semigroups. In these partially ordered sets, we determine the compatibility of their elements, and find all minimal and maximal elements.