To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The optimality of dualities on a quasivariety , generated by a finite algebra , has been introduced by Davey and Priestley in the 1990s. Since every optimal duality is determined by a transversal of a certain family of subsets of Ω, where Ω is a given set of relations yielding a duality on , an understanding of the structures of these subsets—known as globally minimal failsets—was required. A complete description of globally minimal failsets which do not contain partial endomorphisms has recently been given by the author and H. A. Priestley. Here we are concerned with globally minimal failsets containing endomorphisms. We aim to explain what seems to be a pattern in the way endomorphisms belong to these failsets. This paper also gives a complete description of globally minimal failsets whose minimal elements are automorphisms, when is a subdirectly irreducible lattice-structured algebra.
Pseudoeffect (PE-) algebras generalize effect algebras by no longer being necessarily commutative. They are in certain cases representable as the unit interval of a unital po-group, for instance if they fulfil a certain Riesz property.
Several infinitary lattice properties and the countable Riesz interpolation property are studied for PE-algebras on the one hand and for po-groups on the other hand. We establish the exact relationships between the various conditions that are taken into account, and in particular, we examine how properties of a PE-algebra are related to the analogous properties of a representing po-group.
Let A be a uniformly complete vector sublattice of an Archimedean semiprime f-algebra B and p ∈ {1, 2,…}. It is shown that the set ΠBp (A) = {f1 … fp: fk ∈ A, k = 1, …, p } is a uniformly complete vector sublattice of B. Moreover, if A is provided with an almost f-algebra multiplication * then there exists a positive operator Tp, from ΠBp(A) into A such that fi *…* fp = Tp(f1 …fp) for all f1…fp ∈ A.
As application, being given a uniformly complete almost f-algebra (A, *) and a natural number p ≧ 3, the set Π*p(A) = {f1 *… *fp: fk ∈ A, k = 1…p} is a uniformly complete semiprime f-algebra under the ordering and the multiplication inherited from A.
Generalizing earlier results of Katriňák, El-Assar and the present author we prove new structure theorems for l-algebras. We obtain necessary and sufficient conditions for the decomposition of an arbitrary bounded lattice into a direct product of (finitely) subdirectly irreducible lattices.
Generalizing and strengthening some well-known results of Higman, B. Neumann, Hanna Neumann and Dark on embeddings into two-generator groups, we introduce a construction of subnormal verbal embedding of an arbitrary (soluble, fully ordered or torsion free) ordered countable group into a twogenerator ordered group with these properties. Further, we establish subnormal verbal embedding of defect two of an arbitrary (soluble, fully ordered or torsion free) ordered group G into a group with these properties and of the same cardinality as G, and show in connection with a problem of Heineken that the defect of such an embedding cannot be made smaller, that is, such verbal embeddings of ordered groups cannot in general be normal.
Consider the quasi-variety generated by a finite algebra and assume that yields a natural duality on based on which is optimal modulo endomorphisms. We shoe that, provided satisfies certain minimality conditions, we can transfer this duality to a natural duality on based on , which is also optimal modulo endormorphisms, for any finite algebra in that has a subalgebra isomorphic to .
Pseudo-BL algebras are noncommutative generalizations of BL-algebras and they include pseudo-MV algebras, a class of structures that are categorically equivalent to l-groups with strong unit. In this paper we characterize directly indecomposable pseudo-BL algebras and we define and study different classes of these structures: local, good, perfect, peculiar, and (strongly) bipartite pseudo-BL algebras.
We give a characterization of nuclear Fréchet lattices in terms of lattice properties of the seminorms. Indeed, we prove that a Fréchet lattice is nuclear if and only if it is both an AL- and an AM-space.
In this paper, the variety of three-valued closure algebras, that is, closure algebras with the property that the open elements from a three-valued Heyting algebra, is investigated. Particularly, the structure of the finitely generated free objects in this variety is determined.
A subset F of an ordered set X is a fibre of X if F intersects every maximal antichain of X. We find a lower bound on the function ƒ (D), the minimum fibre size in the distributive lattice D, in terms of the size of D. In particular, we prove that there is a constant c such that In the process we show that minimum fibre size is a monotone property for a certain class of distributive lattices. This fact depends upon being able to split every maximal antichain of this class of distributive lattices into two parts so that the lattice is the union of the upset of one part and the downset of the other.
Let K and L be lattices, and let ϕ be a homomorphism of K into L.Then ϕ induces a natural 0-preserving join-homomorphism of Con K into Con L.
Extending a result of Huhn, the authors proved that if D and E are finite distributive lattices and ψ is a 0-preserving join-homomorphism from D into E, then D and E can be represented as the congruence lattices of the finite lattices K and L, respectively, such that ψ is the natural 0-preserving join-homomorphism induced by a suitable homomorphism ϕ: K → L. Let m and n denote the number of join-irreducible elements of D and E, respectively, and let k = max (m, n). The lattice L constructed was of size O(22(n+m)) and of breadth n+m.
We prove that K and L can be constructed as ‘small’ lattices of size O(k5) and of breadth three.
The covering relation in the lattice of subuniverses of a finite distributive lattices is characterized in terms of how new elements in a covering sublattice fit with the sublattice covered. In general, although the lattice of subuniverses of a finite distributive lattice will not be modular, nevertheless we are able to show that certain instances of Dedekind's Transposition Principle still hold. Weakly independent maps play a key role in our arguments.
If P is a partially ordered set and R is a commutative ring, then a certain differential graded R-algebra A•(P) is defined from the order relation on P. The algebra A•() corresponding to the empty poset is always contained in A•(P) so that A•(P) can be regarded as an A•()-algebra. The main result of this paper shows that if R is an integral domain and P and P′ are finite posets such that A•(P)≅A•(P′) as differential graded A•()-algebras, then P and P′ are isomorphic.
A unified study is undertaken of finitely generated varieties HSP () of distributive lattices with unary operations, extending work of Cornish. The generating algebra () is assusmed to be of the form (P; ∧, ∨, 0, 1, {fμ}), where each fμ is an endomorphism or dual endomorphism of (P; ∧, ∨, 0, 1), and the Priestly dual of this lattice is an ordered semigroup N whose elements act by left multiplication to give the maps dual to the operations fμ. Duality theory is fully developed within this framework, into which fit many varieties arising in algebraic logic. Conditions on N are given for the natural and Priestley dualities for HSP () to be essentially the same, so that, inter alia, coproducts in HSP () are enriched D-coproducts.
We investigate the number and size of the maximal sublattices of a finite lattice. For any positive integer k, there is a finite lattice L with more that ]L]k sublattices. On the other hand, there are arbitrary large finite lattices which contain a maximal sublattice with only 14 elements. It is shown that every bounded lattice is isomorphic to the Frattini sublattice (the intersection of all maximal sublattices) of a finite bounded lattice.
As a consequence of general principles, we add to the array of ‘hulls’ in the category Arch (of archimedean ℓ-groups with ℓ-homomorphisms) and in its non-full subcategory W (whose objects have distinguished weak order unit, whose morphisms preserve the unit). The following discussion refers to either Arch or W. Let α be an infinite cardinal number or ∞, let Homα; denote the class of α-complete homomorphisms, and let R be a full epireflective subcategory with reflections denoted rG: G → rG. Then for each G, there is rαG ∈ Homα (G, R) such that for each ϕ ∈ Homα (G, R), there is unique with . Moreover if every rG is an essential embedding, then, for every α and every G, rαG = rG, and every Homα. If and R consists of all epicomplete objects, then every Homw1. For α = ∞, and for any R, every Hom∞.
It is known that every frame is isomorphic to the generalized Gleason algebra of an essentially unique bi-Stonian space (X, σ, τ) in which σ is T0. Let (X, σ, τ) be as above. The specialization order ≤σ, of (X, σ) is τ × τ-closed. By Nachbin's Theorem there is exactly one quasi-uniformity U on X such that ∩U = ≤σ and J(U*) = τ. This quasi-uniformity is compatible with σ and is coarser than the Pervin quasi-uniformity U of (X, σ). Consequently, τ is coarser than the Skula topology of σ and coincides with the Skula topology if and only if U = P.
This paper studies higher dimensional analogues of the Tamari lattice on triangulations of a convex n-gon, by placing a partial order on the triangulations of a cyclic d-polytope. Our principal results are that in dimension d≤3, these posets are lattices whose intervals have the homotopy type of a sphere or ball, and in dimension d≤5, all triangulations of a cyclic d-polytope are connected by bistellar operations.
The random k-dimensional partial order Pk(n) on n points is defined by taking n points uniformly at random from [0,1]k. Previous work has concentrated on the case where k is constant: we consider the model where k increases with n.
We pay particular attention to the height Hk(n) of Pk(n). We show that k = (t/log t!) log n is a sharp threshold function for the existence of a t-chain in Pk(n): if k – (t/log t!) log n tends to + ∞ then the probability that Pk(n) contains a t-chain tends to 0; whereas if the quantity tends to − ∞ then the probability tends to 1. We describe the behaviour of Hk(n) for the entire range of k(n).
We also consider the maximum degree of Pk(n). We show that, for each fixed d ≧ 2, is a threshold function for the appearance of an element of degree d. Thus the maximum degree undergoes very rapid growth near this value of k.
We make some remarks on the existence of threshold functions in general, and give some bounds on the dimension of Pk(n) for large k(n).
In this paper we introduce the notion of Riesz homomorphism on Archimedean directed partially ordered groups and use it to study the vector lattice cover of such groups.