We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that the opposite of the category of coalgebras for the Vietoris endofunctor on the category of compact Hausdorff spaces is monadic over $\mathsf {Set}$. We deliver an analogous result for the upper, lower, and convex Vietoris endofunctors acting on the category of stably compact spaces. We provide axiomatizations of the associated (infinitary) varieties. This can be seen as a version of Jónsson–Tarski duality for modal algebras beyond the zero-dimensional setting.
We develop the theory of cofinal types of ultrafilters over measurable cardinals and establish its connections to Galvin’s property. We generalize fundamental results from the countable to the uncountable, but often in surprisingly strengthened forms, and present models with varying structures of the cofinal types of ultrafilters over measurable cardinals.
We prove a weak version of the cross-product conjecture: $\textrm {F}(k+1,\ell ) \hskip .06cm \textrm {F}(k,\ell +1) \ge (\frac 12+\varepsilon ) \hskip .06cm \textrm {F}(k,\ell ) \hskip .06cm \textrm {F}(k+1,\ell +1)$, where $\textrm {F}(k,\ell )$ is the number of linear extensions for which the values at fixed elements $x,y,z$ are k and $\ell $ apart, respectively, and where $\varepsilon>0$ depends on the poset. We also prove the converse inequality and disprove the generalized cross-product conjecture. The proofs use geometric inequalities for mixed volumes and combinatorics of words.
We investigate degree of satisfiability questions in the context of Heyting algebras and intuitionistic logic. We classify all equations in one free variable with respect to finite satisfiability gap, and determine which common principles of classical logic in multiple free variables have finite satisfiability gap. In particular we prove that, in a finite non-Boolean Heyting algebra, the probability that a randomly chosen element satisfies $x \vee \neg x = \top $ is no larger than $\frac {2}{3}$. Finally, we generalize our results to infinite Heyting algebras, and present their applications to point-set topology, black-box algebras, and the philosophy of logic.
The hypercontractive inequality is a fundamental result in analysis, with many applications throughout discrete mathematics, theoretical computer science, combinatorics and more. So far, variants of this inequality have been proved mainly for product spaces, which raises the question of whether analogous results hold over non-product domains.
We consider the symmetric group, $S_n$, one of the most basic non-product domains, and establish hypercontractive inequalities on it. Our inequalities are most effective for the class of global functions on $S_n$, which are functions whose $2$-norm remains small when restricting $O(1)$ coordinates of the input, and assert that low-degree, global functions have small q-norms, for $q>2$.
As applications, we show the following:
1. An analog of the level-d inequality on the hypercube, asserting that the mass of a global function on low degrees is very small. We also show how to use this inequality to bound the size of global, product-free sets in the alternating group $A_n$.
2. Isoperimetric inequalities on the transposition Cayley graph of $S_n$ for global functions that are analogous to the KKL theorem and to the small-set expansion property in the Boolean hypercube.
3. Hypercontractive inequalities on the multi-slice and stability versions of the Kruskal–Katona Theorem in some regimes of parameters.
We study ordered groups in the context of both algebra and computability. Ordered groups are groups that admit a linear order that is compatible with the group operation. We explore some properties of ordered groups and discuss some related topics. We prove results about the semidirect product in relation to orderability and computability. In particular, we give a criteria for when a semidirect product of orderable groups is orderable and for when a semidirect product is computably categorical. We also give an example of a semidirect product that has the halting set coded into its multiplication structure but it is possible to construct a computable presentation of this semidirect product.
We examine a family of orderable groups that admit exactly countably many orders and show that their space of orders has arbitrary finite Cantor–Bendixson rank. Furthermore, this family of groups is also shown to be computably categorical, which in particular will allow us to conclude that any computable presentation of the groups does not admit any noncomputable orders. Lastly, we construct an example of an orderable computable group with no computable Archimedean orders but at least one computable non-Archimedean order.
We introduce and study a class of betweenness algebras—Boolean algebras with binary operators, closely related to ternary frames with a betweenness relation. From various axioms for betweenness, we chose those that are most common, which makes our work applicable to a wide range of betweenness structures studied in the literature. On the algebraic side, we work with two operators of possibility and of sufficiency.
Given a graph G without loops, the pseudograph associahedron PG is a smooth polytope, so there is a projective smooth toric variety XG corresponding to PG. Taking the real locus of XG, we have the projective smooth real toric variety $X^{\mathbb{R}}_G$. The integral cohomology groups of $X^{\mathbb{R}}_G$ can be computed by studying the topology of certain posets of even subgraphs of G; such a poset is neither pure nor shellable in general. We completely characterize the graphs whose posets of even subgraphs are always shellable. It follows that we get a family of projective smooth real toric varieties whose integral cohomology groups are torsion-free or have only 2-torsion.
Monoidal t-norm based logic $\mathbf {MTL}$ is the weakest t-norm based residuated fuzzy logic, which is a $[0,1]$-valued propositional logical system having a t-norm and its residuum as truth function for conjunction and implication. Monadic fuzzy predicate logic $\mathbf {mMTL\forall }$ that consists of the formulas with unary predicates and just one object variable, is the monadic fragment of fuzzy predicate logic $\mathbf {MTL\forall }$, which is indeed the predicate version of monoidal t-norm based logic $\mathbf {MTL}$. The main aim of this paper is to give an algebraic proof of the completeness theorem for monadic fuzzy predicate logic $\mathbf {mMTL\forall }$ and some of its axiomatic extensions. Firstly, we survey the axiomatic system of monadic algebras for t-norm based residuated fuzzy logic and amend some of them, thus showing that the relationships for these monadic algebras completely inherit those for corresponding algebras. Subsequently, using the equivalence between monadic fuzzy predicate logic $\mathbf {mMTL\forall }$ and S5-like fuzzy modal logic $\mathbf {S5(MTL)}$, we prove that the variety of monadic MTL-algebras is actually the equivalent algebraic semantics of the logic $\mathbf {mMTL\forall }$, giving an algebraic proof of the completeness theorem for this logic via functional monadic MTL-algebras. Finally, we further obtain the completeness theorem of some axiomatic extensions for the logic $\mathbf {mMTL\forall }$, and thus give a major application, namely, proving the strong completeness theorem for monadic fuzzy predicate logic based on involutive monoidal t-norm logic $\mathbf {mIMTL\forall }$ via functional representation of finitely subdirectly irreducible monadic IMTL-algebras.
This paper puts forth a class of algebraic structures, relativized Boolean algebras (RBAs), that provide semantics for propositional logic in which truth/validity is only defined relative to a local domain. In particular, the join of an event and its complement need not be the top element. Nonetheless, behavior is locally governed by the laws of propositional logic. By further endowing these structures with operators—akin to the theory of modal Algebras—RBAs serve as models of modal logics in which truth is relative. In particular, modal RBAs provide semantics for various well-known awareness logics and an alternative view of possibility semantics.
The notion of countable well order admits an alternative definition in terms of embeddings between initial segments. We use the framework of reverse mathematics to investigate the logical strength of this definition and its connection with Fraïssé’s conjecture, which has been proved by Laver. We also fill a small gap in Shore’s proof that Fraïssé’s conjecture implies arithmetic transfinite recursion over $\mathbf {RCA}_0$, by giving a new proof of $\Sigma ^0_2$-induction.
Orthomodular logic is a weakening of quantum logic in the sense of Birkhoff and von Neumann. Orthomodular logic is shown to be a nonlinear noncommutative logic. Sequents are given a physically motivated semantics that is consistent with exactly one semantics for propositional formulas that use negation, conjunction, and implication. In particular, implication must be interpreted as the Sasaki arrow, which satisfies the deduction theorem in this logic. As an application, this deductive system is extended to two systems of predicate logic: the first is sound for Takeuti’s quantum set theory, and the second is sound for a variant of Weaver’s quantum logic.
We introduce semidistrim lattices, a simultaneous generalization of semidistributive and trim lattices that preserves many of their common properties. We prove that the elements of a semidistrim lattice correspond to the independent sets in an associated graph called the Galois graph, that products and intervals of semidistrim lattices are semidistrim and that the order complex of a semidistrim lattice is either contractible or homotopy equivalent to a sphere.
Semidistrim lattices have a natural rowmotion operator, which simultaneously generalizes Barnard’s
$\overline \kappa $
map on semidistributive lattices as well as Thomas and the second author’s rowmotion on trim lattices. Every lattice has an associated pop-stack sorting operator that sends an element x to the meet of the elements covered by x. For semidistrim lattices, we are able to derive several intimate connections between rowmotion and pop-stack sorting, one of which involves independent dominating sets of the Galois graph.
We introduce a technique that is helpful in evaluating the reflexivity index of several classes of topological spaces and lattices. The main results are related to products: we give a sufficient condition for the product of a topological space and a nest of balls to have low reflexivity index and determine the reflexivity index of all compact connected 2-manifolds.
We develop a method for showing that various modal logics that are valid in their countably generated canonical Kripke frames must also be valid in their uncountably generated ones. This is applied to many systems, including the logics of finite width, and a broader class of multimodal logics of ‘finite achronal width’ that are introduced here.
The algebraic K-theory of Lawvere theories is a conceptual device to elucidate the stable homology of the symmetry groups of algebraic structures such as the permutation groups and the automorphism groups of free groups. In this paper, we fully address the question of how Morita equivalence classes of Lawvere theories interact with algebraic K-theory. On the one hand, we show that the higher algebraic K-theory is invariant under passage to matrix theories. On the other hand, we show that the higher algebraic K-theory is not fully Morita invariant because of the behavior of idempotents in non-additive contexts: We compute the K-theory of all Lawvere theories Morita equivalent to the theory of Boolean algebras.
Sahlqvist theory is extended to the fragments of the intuitionistic propositional calculus that include the conjunction connective. This allows us to introduce a Sahlqvist theory of intuitionistic character amenable to arbitrary protoalgebraic deductive systems. As an application, we obtain a Sahlqvist theorem for the fragments of the intuitionistic propositional calculus that include the implication connective and for the extensions of the intuitionistic linear logic.