We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let be a Poisson process of intensity one in the infinite plane ℝ2. We surround each point x of by the open disc of radius r centred at x. Now let Sn be a fixed disc of area n, and let Cr(Sn) be the set of discs which intersect Sn. Write Erk for the event that Cr(Sn) is a k-cover of Sn, and Frk for the event that Cr(Sn) may be partitioned into k disjoint single covers of Sn. We prove that P(Erk ∖ Frk) ≤ ck / logn, and that this result is best possible. We also give improved estimates for P(Erk). Finally, we study the obstructions to k-partitionability in more detail. As part of this study, we prove a classification theorem for (deterministic) covers of ℝ2 with half-planes that cannot be partitioned into two single covers.
In this paper we present formulae for contact distributions of a Voronoi tessellation generated by a homogeneous Poisson point process in the d-dimensional Euclidean space. Expressions are given for the probability density functions and moments of the linear and spherical contact distributions. They are double and simple integral formulae, which are tractable for numerical evaluation and for large d. The special cases d = 2 and d = 3 are investigated in detail, while, for d = 3, the moments of the spherical contact distribution function are expressed by standard functions. Also, the closely related chord length distribution functions are considered.
We find the almost-sure Hausdorff and box-counting dimensions of random subsets of self-affine fractals obtained by selecting subsets at each stage of the hierarchical construction in a statistically self-similar manner.
We consider a stationary Poisson process X of k-flats in ℝd with intensity measure Θ and a measurable set S of k-flats depending on F1,…,Fn∈ X, x∈ℝd, and X in a specific equivariant way. If (F1,…,Fn,x) is properly sampled (in a ‘typical way’) then Θ(S) has a gamma distribution. This result generalizes and unifies earlier work by Miles (1971), Møller and Zuyev (1996), and Zuyev (1999). As a new example, we will show that the volume of the fundamental region of a typical j-face of a stationary Poisson–Voronoi tessellation is conditionally gamma distributed. This is true in the area-biased and the area-debiased cases. In the first case the shape parameter is not integer valued. As another new example, we will show that the generalized integral-geometric contents of the (area-biased and area-debiased) typical j-face of a Poisson hyperplane tessellation are conditionally gamma distributed. In the isotropic case the contents boil down to the mean breadth of the face.
Motivated by applications of Gabriel graphs and Yao graphs in wireless ad-hoc networks, we show that the maximum degree of a random Gabriel graph or Yao graph defined on n points drawn uniformly at random from a unit square grows as Θ (log n / log log n) in probability.
In Michel and Paroux (2003) the authors proposed a new proof of a well-known convergence result for the scaled elementary connected vacant component in the high intensity Boolean model towards the Crofton cell of the Poisson hyperplane process (see, e.g. Hall (1985)). In this paper we investigate the second-order term in this convergence when the two-dimensional Boolean model and the Poisson line process are coupled on the same probability space. We consider the particular case where the grains are discs with random radii. A precise coupling between the Boolean model and the Poisson line process is first established. A result of directional convergence in distribution for the difference of the two sets involved is then derived. Eventually, we show the convergence of the process, measuring the difference between the two random sets, once rescaled, as a function of the direction.
We consider a model for a time series of spatial locations, in which points are placed sequentially at random into an initially empty region of ℝd, and given the current configuration of points, the likelihood at location x for the next particle is proportional to a specified function βk of the current number (k) of points within a specified distance of x. We show that the maximum likelihood estimator of the parameters βk (assumed to be zero for k exceeding some fixed threshold) is consistent in the thermodynamic limit where the number of points grows in proportion to the size of the region.
We study lower-dimensional volume-weighted typical faces of a stationary Poisson hyperplane tessellation in d-dimensional Euclidean space. After showing how their distribution can be derived from that of the zero cell, we obtain sharp lower and upper bounds for the expected vertex number of the volume-weighted typical k-face (k=2,…,d). The bounds are respectively attained by parallel mosaics and by isotropic tessellations. We conclude with a remark on expected face numbers and expected intrinsic volumes of the zero cell.
We prove the existence of infinite-volume quermass-interaction processes in a general setting of nonlocally stable interaction and nonbounded convex grains. No condition on the parameters of the linear combination of the Minkowski functionals is assumed. The only condition is that the square of the random radius of the grain admits exponential moments for all orders. Our methods are based on entropy and large deviation tools.
In this paper we obtain an elementary expression for the chord length distribution function of a regular polygon. The formula is derived using δ-formalism in Pleijel identity. In the particular cases of a regular triangle, a square, a regular pentagon, and a regular hexagon, our formula coincides with the results of Sulanke (1961), Gille (1988), Aharonyan and Ohanyan (2005), and Harutyunyan (2007), respectively.
We study a nonparametric method for estimating the boundary measure of a compact body G ⊂ ℝd (the boundary length when d = 2 and the surface area for d = 3) in the case when this measure agrees with the corresponding Minkowski content. The estimator we consider is closely related to the one proposed in Cuevas, Fraiman and Rodríguez-Casal (2007). Our method relies on two sets of random points, drawn inside and outside the set G, with different sampling intensities. Strong consistency and asymptotic normality are obtained under some shape hypotheses on the set G. Some applications and practical aspects are briefly discussed.
Let be a collection of n uniform, independent, and identically distributed points on the Cantor ternary set. We consider the asymptotics for the expected total edge length of the directed and undirected nearest-neighbor graph on We prove convergence to a constant of the rescaled expected total edge length of this random graph. The rescaling factor is a function of the fractal dimension and has a log-periodic, nonconstant behavior.
This paper is devoted to the study of some asymptotic behaviors of Poisson-Voronoi tessellation in the Euclidean space as the space dimension tends to ∞. We consider a family of homogeneous Poisson-Voronoi tessellations with constant intensity λ in Euclidean spaces of dimensions n = 1, 2, 3, …. First we use the Blaschke-Petkantschin formula to prove that the variance of the volume of the typical cell tends to 0 exponentially in dimension. It is also shown that the volume of intersection of the typical cell with the co-centered ball of volume u converges in distribution to the constant λ−1(1 − e−λu). Next we consider the linear contact distribution function of the Poisson-Voronoi tessellation and compute the limit when the space dimension goes to ∞. As a by-product, the chord length distribution and the geometric covariogram of the typical cell are obtained in the limit.
A systematic study of random Laguerre tessellations, weighted generalisations of the well-known Voronoi tessellations, is presented. We prove that every normal tessellation with convex cells in dimension three and higher is a Laguerre tessellation. Tessellations generated by stationary marked Poisson processes are then studied in detail. For these tessellations, we obtain integral formulae for geometric characteristics and densities of the typical k-faces. We present a formula for the linear contact distribution function and prove various limit results for convergence of Laguerre to Poisson-Voronoi tessellations. The obtained integral formulae are subsequently evaluated numerically for the planar case, demonstrating their applicability for practical purposes.
In this paper we introduce Lévy-driven Cox point processes (LCPs) as Cox point processes with driving intensity function Λ defined by a kernel smoothing of a Lévy basis (an independently scattered, infinitely divisible random measure). We also consider log Lévy-driven Cox point processes (LLCPs) with Λ equal to the exponential of such a kernel smoothing. Special cases are shot noise Cox processes, log Gaussian Cox processes, and log shot noise Cox processes. We study the theoretical properties of Lévy-based Cox processes, including moment properties described by nth-order product densities, mixing properties, specification of inhomogeneity, and spatio-temporal extensions.
We extend a result due to Zazanis (1992) on the analyticity of the expectation of suitable functionals of homogeneous Poisson processes with respect to the intensity of the process. As our main result, we provide Monte Carlo estimators for the derivatives. We apply our results to stochastic models which are of interest in stochastic geometry and insurance.
We study a flexible class of finite-disc process models with interaction between the discs. We let 𝒰 denote the random set given by the union of discs, and use for the disc process an exponential family density with the canonical sufficient statistic depending only on geometric properties of 𝒰 such as the area, perimeter, Euler-Poincaré characteristic, and the number of holes. This includes the quermass-interaction process and the continuum random-cluster model as special cases. Viewing our model as a connected component Markov point process, and thereby establishing local and spatial Markov properties, becomes useful for handling the problem of edge effects when only 𝒰 is observed within a bounded observation window. The power tessellation and its dual graph become major tools when establishing inclusion-exclusion formulae, formulae for computing geometric characteristics of 𝒰, and stability properties of the underlying disc process density. Algorithms for constructing the power tessellation of 𝒰 and for simulating the disc process are discussed, and the software is made public available.
We discuss the determination of the mean normal measure of a stationary random set Z ⊂ ℝd by taking measurements at the intersections of Z with k-dimensional planes. We show that mean normal measures of sections with vertical planes determine the mean normal measure of Z if k ≥ 3 or if k = 2 and an additional mild assumption holds. The mean normal measures of finitely many flat sections are not sufficient for this purpose. On the other hand, a discrete mean normal measure can be verified (i.e. an a priori guess can be confirmed or discarded) using mean normal measures of intersections with m suitably chosen planes when m ≥ ⌊d / k⌋ + 1. This even holds for almost all m-tuples of k-dimensional planes are viable for verification. A consistent estimator for the mean normal measure of Z, based on stereological measurements in vertical sections, is also presented.
A random tessellation of ℝd is said to be homogeneous if its distribution is invariant under all shifts of ℝd. The iteration of homogeneous random tessellations is described in a new manner that makes it evident that the resulting random tessellation is homogeneous again. Furthermore, a tessellation-valued process is constructed, the random states of which are homogeneous random tessellations stable under iteration (STIT). It can be interpreted as a process of subsequent division of cells.
Start with a necklace consisting of one white bead and one black bead, and add new beads one at a time by inserting each new bead between a randomly chosen adjacent pair of old beads, with the proviso that the new bead will be white if and only if both beads of the adjacent pair are black. Let Wn denote the number of white beads when the total number of beads is n. We show that EWn = n/3 and, with c2 = 2/45, that (Wn − n/3) / c√nis asymptotically standard normal. We find that, for all r ≥ 1 and n > 2r, the rth cumulant of the distribution of Wn is of the form nhr. We find the expected numbers of gaps of given length between white beads, and examine the asymptotics of the longest gaps.