We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In Bhatt and Roy's minimal directed spanning tree construction for n random points in the unit square, all edges must be in a south-westerly direction and there must be a directed path from each vertex to the root placed at the origin. We identify the limiting distributions (for large n) for the total length of rooted edges, and also for the maximal length of all edges in the tree. These limit distributions have been seen previously in analysis of the Poisson-Dirichlet distribution and elsewhere; they are expressed in terms of Dickman's function, and their properties are discussed in some detail.
It is proved that the shape of the typical cell of a stationary Poisson-Voronoi tessellation in Euclidean space, under the condition that the volume of the typical cell is large, must be close to spherical, with high probability. The same holds if the volume is replaced by the surface area or other suitable functionals. Similar results are established for the zero cell of a stationary and isotropic Poisson hyperplane tessellation.
We consider the problem of estimating the boundary of a compact set S ⊂ ℝd from a random sample of points taken from S. We use the Devroye-Wise estimator which is a union of balls centred at the sample points with a common radius (the smoothing parameter in this problem). A universal consistency result, with respect to the Hausdorff metric, is proved and convergence rates are also obtained under broad intuitive conditions of a geometrical character. In particular, a shape condition on S, which we call expandability, plays an important role in our results. The simple structure of the considered estimator presents some practical advantages (for example, the computational identification of the boundary is very easy) and makes this problem quite close to some basic issues in stochastic geometry.
This paper is motivated by the modelling of leaching of bacteria through soil. A semi-linear process Xt− may be used to describe the soil-drying process between rain showers. This is a backward recurrence time process that corresponds to the renewal process of instances of rain. If a bacterium moves according to another process h, then the fact that h(t) stays above Xt− means that the bacterium never hits a dry patch of soil and so survives. We describe a critical behaviour of h that separates the cases when survival is possible with a positive probability from the cases when this probability vanishes. An explicit formula for the survival probability is obtained in case h is linear and rain showers follow a Poisson process.
We consider some generalizations of the germ-grain growing model studied by Daley, Mallows and Shepp (2000). In this model, a realization of a Poisson process on a line with points Xi is fixed. At time zero, simultaneously at each Xi, a circle (grain) starts growing at the same speed. It grows until it touches another grain, and then it stops. The question is whether the point zero is eventually covered by some circle. In our note we expand this model in the following three directions. We study: a one-sided growth model with a fixed number of circles; a grain-growth model on a regular tree; and a grain-growth model on a line with non-Poisson distributed centres of the circles.
We study the asymptotic properties of a minimal spanning tree formed by n points uniformly distributed in the unit square, where the minimality is amongst all rooted spanning trees with a direction of growth. We show that the number of branches from the root of this tree, the total length of these branches, and the length of the longest branch each converges weakly. This model is related to the study of record values in the theory of extreme-value statistics and this relation is used to obtain our results. The results also hold when the tree is formed from a Poisson point process of intensity n in the unit square.
The iterative division of a triangle by chords which join a randomly-selected vertex of a triangle to the opposite side is investigated. Results on the limiting random graph which eventuates are given. Aspects studied are: the order of vertices; the fragmentation of chords; age distributions for elements of the graph; various topological characterisations of the triangles. Different sampling protocols are explored. Extensive use is made of the theory of branching processes.
Consider an inhomogeneous germ-grain model with spherical grains whose radii depend on their positions through a rate function, possibly perturbed by a random noise. We find the critical rate function that separates the cases when the germ-grain model covers the whole space with a positive probability and when the total coverage occurs with probability zero.
The zonoid of a d-dimensional random vector is used as a tool for measuring linear dependence among its components. A preorder of linear dependence is defined through inclusion of the zonoids. The zonoid of a random vector does not characterize its distribution, but it does characterize the size-biased distribution of its compositional variables. This fact will allow a characterization of our linear dependence order in terms of a linear-convex order for the size-biased compositional variables. In dimension 2 the linear dependence preorder will be shown to be weaker than the concordance order. Some examples related to the Marshall-Olkin distribution and to a copula model will be presented, and a class of measures of linear dependence will be proposed.
The purpose of the paper is to study the asymptotic geometry of a smooth-grained Boolean model (X[t])t≥0 restricted to a bounded domain as the intensity parameter t goes to ∞. Our approach is based on investigating the asymptotic properties as t → ∞ of the random sets X[t;β], β≥0, defined as the Gibbsian modifications of X[t] with the Hamiltonian given by βtμ(·), where μ is a certain normalized measure on the setting space. We show that our model exhibits a phase transition at a certain critical value of the inverse temperature β and we prove that at higher temperatures the behaviour of X[t;β] is qualitatively very similar to that of X[t] but it becomes essentially different in the low-temperature region. From these facts we derive information about the asymptotic properties of the original process X[t]. The results obtained include large- and moderate-deviation principles. We conclude the paper with an example application of our methods to analyse the asymptotic moderate-deviation properties of convex hulls of large uniform samples on a multidimensional ball. To translate the above problem to the Boolean model setting considered we use an appropriate representation of convex sets in terms of their support functions.
In this paper, we give an explicit expression for the distribution of the number of sides (or equivalently vertices) of the typical cell of a two-dimensional Poisson-Voronoi tessellation. We use this formula to give a table of numerical values of the distribution function.
We consider the Voronoi tessellation of Euclidean space that is generated by an inhomogeneous Poisson point process whose intensity takes different constant values on sets of some finite partition of the space. Considering the Voronoi cells as marks associated with points of the point process, we prove that the intensity measure (mean measure) of the marked Poisson point process admits an approximate decomposition formula. The true value is approximated by a mixture of respective intensity measures for homogeneous models, while the explicit upper bound for the remainder term can be computed numerically for a large class of practical examples. By the Campbell formula, analogous approximate decompositions are deduced for the Palm distributions of individual cells. This approach makes possible the analysis of a wide class of inhomogeneous-Poisson Voronoi tessellations, by means of formulae and estimates already established for homogeneous cases. Our analysis applies also to the Poisson process modulated by an independent stationary random partition, in which case the error of the approximation of the double-stochastic-Poisson Voronoi tessellation depends on some integrated linear contact distribution functions of the boundaries of the partition elements.
By making use of the geometric properties of simplex shape spaces, this paper investigates the problems relating to the estimation of the Fréchet means of the random shapes of simplices in Euclidean spaces and also, for the random shapes induced by certain normally distributed simplices, the problems relating to the location of these Fréchet means. In particular, we obtain an algorithm for computing sample mean shapes in simplex shape spaces which converges reasonably fast.
Consider a circle of circumference 1. Throw n points at random onto this circle and append to each of these points a clockwise arc of length s. The resulting random set is a union of a random number of connected components, each with specific size. Using tools designed by Steutel, we compute the joint distribution of the lengths of the connected components. Asymptotic results are presented when n goes to ∞ and s to 0 jointly according to different regimes.
In this paper, we give an explicit integral expression for the joint distribution of the number and the respective positions of the sides of the typical cell 𝒞 of a two-dimensional Poisson-Voronoi tessellation. We deduce from it precise formulae for the distributions of the principal geometric characteristics of 𝒞 (area, perimeter, area of the fundamental domain). We also adapt the method to the Crofton cell and the empirical (or typical) cell of a Poisson line process.
A spectral theory for stationary random closed sets is developed and provided with a sound mathematical basis. The definition and a proof of the existence of the Bartlett spectrum of a stationary random closed set as well as the proof of a Wiener-Khinchin theorem for the power spectrum are used to two ends. First, well-known second-order characteristics like the covariance can be estimated faster than usual via frequency space. Second, the Bartlett spectrum and the power spectrum can be used as second-order characteristics in frequency space. Examples show that in some cases information about the random closed set is easier to obtain from these characteristics in frequency space than from their real-world counterparts.
Shot noise Cox processes constitute a large class of Cox and Poisson cluster processes in ℝd, including Neyman-Scott, Poisson-gamma and shot noise G Cox processes. It is demonstrated that, due to the structure of such models, a number of useful and general results can easily be established. The focus is on the probabilistic aspects with a view to statistical applications, particularly results for summary statistics, reduced Palm distributions, simulation with or without edge effects, conditional simulation of the intensity function and local and spatial Markov properties.
Estimation methods for the directional measure of a stationary planar random set Z, based only on discretized realizations of Z, are discussed. Properties of the discretized set that can be derived by comparing neighbouring grid points are used. Larger grid configurations of more than two grid points are considered. It is shown that the probabilities of observing the various types of configurations can be expressed in terms of the first contact distribution function of Z (with a finite structuring element). An important prerequisite result concerning deterministic dilation areas is also established. The inference on the mean normal measure based on 2×2 configurations is discussed in detail.
In this article we prove local convergence for a Boolean model of shells conditioned by the noncovering of the origin towards the thick hyperplane Poisson process in the Euclidean space. The existing results of Hall as well as the convergence theorems proved by Paroux or Molchanov concerned the zero-width process and the connected component of the unfilled region of the origin. Our results deal with the convergence in any given window of the space, with the earlier results of Paroux and Molchanov as a corollary.
The covariance C(r), r ≥ 0, of a stationary isotropic random closed set Ξ is typically complicated to evaluate. This is the reason that an exponential approximation formula for C(r) has been widely used in the literature, which matches C(0) and C(1)(0), and in many cases also limr→∞C(r). However, for 0 < r < ∞, the accuracy of this approximation is not very high in general. In the present paper, we derive representation formulae for the covariance C(r) and its derivative C(1)(r) using Palm calculus, where r ≥ 0 is arbitrary. As a consequence, an explicit expression is obtained for the second derivative C(2)(0). These results are then used to get a refined exponential approximation for C(r), which additionally matches the second derivative C(2)(0).