We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we discuss the complementary theorem applied to the typical n-tuple of a Poisson point process. The theorem was first presented by Miles in 1970 and discussed by Santaló in 1976 and, within a Palm measure framework, by Møller and Zuyev in 1996. The theorems put forward by these authors are not correct for all the examples that they present, suggesting that further consideration of their work is needed if one wishes to bring all those examples within the ambit of the complementary theorem. We give alternative analyses of the errant examples and, with a modification of the technicalities in the work of the above authors, move toward a more comprehensive complementary theorem. Some open issues still remain.
We consider a family of long-range percolation models (Gp)p>0 on ℤd that allow dependence between edges and have the following connectivity properties for p ∈ (1/d, ∞): (i) the degree distribution of vertices in Gp has a power-law distribution; (ii) the graph distance between points x and y is bounded by a multiple of logpdlogpd|x - y| with probability 1 - o(1); and (iii) an adversary can delete a relatively small number of nodes from Gp(ℤd ∩ [0, n]d), resulting in two large, disconnected subgraphs.
A stationary partition based on a stationary point process N in ℝd is an ℝd-valued random field π={π(x): x∈ℝd} such that both π(y)∈N for each y∈ℝd and the random partition {{y∈ℝd: π(y)=x}: x∈N} is stationary jointly with N. Stationary partitions may be considered as general versions of the stationary random tessellations studied in stochastic geometry. As in the special case of the Voronoi tessellation, a stationary partition can be used to relate the underlying stationary probability measure to the associated Palm probability measure of N. In doing so, we will develop some basic theory for stationary partitions and extend properties of stationary tessellations to our more general case. One basic idea is that the stationary measure is (up to a shift) a weighted version of the Palm measure, where the weight is the volume of the typical cell. We will make systematic use of a known modified probability measure. Finally, we use our approach to extend some recent results on the shift coupling of the stationary distribution and the Palm distribution.
In Bhatt and Roy's minimal directed spanning tree construction for a random, partially ordered set of points in the unit square, all edges must respect the ‘coordinatewise’ partial order and there must be a directed path from each vertex to a minimal element. We study the asymptotic behaviour of the total length of this graph with power-weighted edges. The limiting distribution is given by the sum of a normal component away from the boundary plus a contribution introduced by the boundary effects, which can be characterized by a fixed-point equation, and is reminiscent of limits arising in the probabilistic analysis of certain algorithms. As the exponent of the power weighting increases, the distribution undergoes a phase transition from the normal contribution being dominant to the boundary effects being dominant. In the critical case in which the weight is simple Euclidean length, both effects contribute significantly to the limit law.
In 1977 D. G. Kendall considered diffusions of shape induced by independent Brownian motions in Euclidean space. In this paper, we consider a different class of diffusions of shape, induced by the projections of a randomly rotating, labelled ensemble. In particular, we study diffusions of shapes induced by projections of planar triangular configurations of labelled points onto a fixed straight line. That is, we consider the process in Σ13 (the shape space of triads in ℝ) that results from extracting the ‘shape information’ from the projection of a given labelled planar triangle as this evolves under the action of Brownian motion in SO(2). We term the thus-defined diffusions Radon diffusions and derive explicit stochastic differential equations and stationary distributions. The latter belong to the family of angular central Gaussian distributions. In addition, we discuss how these Radon diffusions and their limiting distributions are related to the shape of the initial triangle, and explore whether the relationship is bijective. The triangular case is then used as a basis for the study of processes in Σ1k arising from projections of an arbitrary number, k, of labelled points on the plane. Finally, we discuss the problem of Radon diffusions in the general shape space Σnk.
Classical principal component analysis on manifolds, for example on Kendall's shape spaces, is carried out in the tangent space of a Euclidean mean equipped with a Euclidean metric. We propose a method of principal component analysis for Riemannian manifolds based on geodesics of the intrinsic metric, and provide a numerical implementation in the case of spheres. This method allows us, for example, to compare principal component geodesics of different data samples. In order to determine principal component geodesics, we show that in general, owing to curvature, the principal component geodesics do not pass through the intrinsic mean. As a consequence, means other than the intrinsic mean are considered, allowing for several choices of definition of geodesic variance. In conclusion we apply our method to the space of planar triangular shapes and compare our findings with those of standard Euclidean principal component analysis.
Conditions are derived for the asymptotic normality of a general class of vector-valued functionals of stationary Boolean models in the d-dimensional Euclidean space, where a Lindeberg-type central limit theorem for m-dependent random fields, m ∈ N, is applied. These functionals can be used to construct joint estimators for the vector of specific intrinsic volumes of the underlying Boolean model. Extensions to functionals of more general germ–grain models satisfying some mixing and integrability conditions are also discussed.
In this article, we study a particular example of general random tessellation, the dead leaves model. This model, first studied by the mathematical morphology school, is defined as a sequential superimposition of random closed sets, and provides the natural tool to study the occlusion phenomenon, an essential ingredient in the formation of visual images. We generalize certain results of G. Matheron and, in particular, compute the probability of n compact sets being included in visible parts. This result characterizes the distribution of the boundary of the dead leaves tessellation.
In this paper we establish large deviation results on the number of extreme points of a homogeneous Poisson point process in the unit ball of Rd. In particular, we deduce an almost-sure law of large numbers in any dimension. As an auxiliary result we prove strong localization of the extreme points in an annulus near the boundary of the ball.
For n independent, identically distributed uniform points in [0, 1]d, d ≥ 2, let Ln be the total distance from the origin to all the minimal points under the coordinatewise partial order (this is also the total length of the rooted edges of a minimal directed spanning tree on the given random points). For d ≥ 3, we establish the asymptotics of the mean and the variance of Ln, and show that Ln satisfies a central limit theorem, unlike in the case d = 2.
We construct random dynamics for collections of nonintersecting planar contours, leaving invariant the distributions of length- and area-interacting polygonal Markov fields with V-shaped nodes. The first of these dynamics is based on the dynamic construction of consistent polygonal fields, as presented in the original articles by Arak (1983) and Arak and Surgailis (1989), (1991), and it provides an easy-to-implement Metropolis-type simulation algorithm. The second dynamics leads to a graphical construction in the spirit of Fernández et al. (1998), (2002) and yields a perfect simulation scheme in a finite window in the infinite-volume limit. This algorithm seems difficult to implement, yet its value lies in that it allows for theoretical analysis of the thermodynamic limit behaviour of length-interacting polygonal fields. The results thus obtained include, in the class of infinite-volume Gibbs measures without infinite contours, the uniqueness and exponential α-mixing of the thermodynamic limit of such fields in the low-temperature region. Outside this class, we conjecture the existence of an infinite number of extreme phases breaking both the translational and rotational symmetries.
Our main result is the proof of the existence of random stationary tessellations in d-dimensional Euclidean space with the following stability property: their distribution is invariant with respect to the operation of iteration (or nesting) of tessellations with an appropriate rescaling. This operation means that the cells of a given tessellation are individually and independently subdivided by independent, identically distributed tessellations, resulting in a new tessellation. It is also shown that, for any stationary tessellation, the sequence that is generated by repeated rescaled iteration converges weakly to such a stable tessellation; thus, the class of all stable stationary tessellations is fully characterized.
Given a class Γ of curves in [0, 1]2, we ask: in a cloud of n uniform random points, how many points can lie on some curve γ ∈ Γ? Classes studied here include curves of length less than or equal to L, Lipschitz graphs, monotone graphs, twice-differentiable curves, and graphs of smooth functions with m-bounded derivatives. We find, for example, that there are twice-differentiable curves containing as many as OP(n1/3) uniform random points, but not essentially more than this. More generally, we consider point clouds in higher-dimensional cubes [0, 1]d and regular hypersurfaces of specified codimension, finding, for example, that twice-differentiable k-dimensional hypersurfaces in Rd may contain as many as OP(nk/(2d-k)) uniform random points. We also consider other notions of ‘incidence’, such as curves passing through given location/direction pairs, and find, for example, that twice-differentiable curves in R2 may pass through at most OP(n1/4) uniform random location/direction pairs. Idealized applications in image processing and perceptual psychophysics are described and several open mathematical questions are identified for the attention of the probability community.
The convex hull of n independent random points in ℝd, chosen according to the normal distribution, is called a Gaussian polytope. Estimates for the variance of the number of i-faces and for the variance of the ith intrinsic volume of a Gaussian polytope in ℝd, d∈ℕ, are established by means of the Efron-Stein jackknife inequality and a new formula of Blaschke-Petkantschin type. These estimates imply laws of large numbers for the number of i-faces and for the ith intrinsic volume of a Gaussian polytope as n→∞.
In a unified approach, this paper presents distributional properties of a Voronoi tessellation generated by a homogeneous Poisson point process in the Euclidean space of arbitrary dimension. Probability density functions and moments are given for characteristics of the ‘typical’ edge in lower-dimensional section hyperplanes (edge lengths, adjacent angles). We investigate relationships between edges and their neighbours, called Poisson points or centres; namely angular distributions, distances, and positions of neighbours relative to the edge. The approach is analytical, and the results are given partly explicitly and partly as integral expressions, which are suitable for the numerical calculations also presented.
We consider stationary and ergodic tessellations X = Ξnn≥1 in Rd, where X is observed in a bounded and convex sampling window Wp ⊂ Rd. It is assumed that the cells Ξn of X possess random inner structures, examples of which include point patterns, fibre systems, and tessellations. These inner cell structures are generated, both independently of each other and independently of the tessellation X, by generic stationary random sets that are related to a stationary random vector measure J0 acting on Rd. In particular, we study the asymptotic behaviour of a multivariate random functional, which is determined both by X and by the individual cell structures contained in Wp, as Wp ↑ Rd. It turns out that this functional provides an unbiased estimator for the intensity vector associated with J0. Furthermore, under natural restrictions, strong laws of large numbers and a multivariate central limit theorem of the normalized functional are proven. Finally, we discuss in detail some numerical examples and applications, for which the inner structures of the cells of X are induced by iterated Poisson-type tessellations.
We introduce a class of Cox cluster processes called generalised shot noise Cox processes (GSNCPs), which extends the definition of shot noise Cox processes (SNCPs) in two directions: the point process that drives the shot noise is not necessarily Poisson, and the kernel of the shot noise can be random. Thereby, a very large class of models for aggregated or clustered point patterns is obtained. Due to the structure of GSNCPs, a number of useful results can be established. We focus first on deriving summary statistics for GSNCPs and, second, on how to simulate such processes. In particular, results on first- and second-order moment measures, reduced Palm distributions, the J-function, simulation with or without edge effects, and conditional simulation of the intensity function driving a GSNCP are given. Our results are exemplified in important special cases of GSNCPs, and we discuss their relation to the corresponding results for SNCPs.
An exact expression is determined for the asymptotic constant c2 in the limit theorem by P. Groeneboom (1988), which states that the number of vertices of the convex hull of a uniform sample of n random points from a circular disk satisfies a central limit theorem, as n → ∞, with asymptotic variance 2πc2n1/3.
In a convex domain K in ℝd, a transmitter and a receiver are placed at random according to the uniform distribution. The statistics of the power received by the receiver is an important quantity for the design of wireless communication systems. Bounds for the moments of the received power are given, which depend only on the volume and the surface area of the convex domain.
A stereological formula for the Euler number involving projections of the set in thin parallel slabs is considered. Sufficient conditions for the validity of this formula are derived.