We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The iteration of random tessellations in ℝd is considered, where each cell of an initial tessellation is further subdivided into smaller cells by so-called component tessellations. Sufficient conditions for stationarity and isotropy of iterated tessellations are given. Formulae are derived for the intensities of their facet processes, and for the expected intrinsic volumes of their typical facets. Particular emphasis is put on two special cases: superposition and nesting of tessellations. Bernoulli thinning of iterated tessellations is also considered.
A new class of models for inhomogeneous spatial point processes is introduced. These locally scaled point processes are modifications of homogeneous template point processes, having the property that regions with different intensities differ only by a scale factor. This is achieved by replacing volume measures used in the density with locally scaled analogues defined by a location-dependent scaling function. The new approach is particularly appealing for modelling inhomogeneous Markov point processes. Distance-interaction and shot noise weighted Markov point processes are discussed in detail. It is shown that the locally scaled versions are again Markov and that locally the Papangelou conditional intensity of the new process behaves like that of a global scaling of the homogeneous process. Approximations are suggested that simplify calculation of the density, for example, in simulation. For sequential point processes, an alternative and simpler definition of local scaling is proposed.
A known gamma-type result for the Poisson process states that certain domains defined through configuration of the points (or ‘particles’) of the process have volumes which are gamma distributed. By proving the corresponding sequential gamma-type result, we show that in some cases such a domain allows for decomposition into subdomains each having independent exponentially distributed volumes. We consider other examples—based on the Voronoi and Delaunay tessellations—where a natural decomposition does not produce subdomains with exponentially distributed volumes. A simple algorithm for the construction of a typical Voronoi flower arises in this work. In our theoretical development, we generalize the classical theorem of Slivnyak, relating it to the strong Markov property of the Poisson process and to a result of Mecke and Muche (1995). This new theorem has interest beyond the specific problems being considered here.
Our aim is to estimate the volume-weighted mean of the volumes of three-dimensional ‘particles’ (compact, not-necessarily-convex subsets) from plane sections of the particle population. The standard stereological technique is to place test lines in the plane section, and measure cubed intercept lengths with the two-dimensional particle profiles. This paper discusses more efficient estimators obtained by integrating over all possible placements of the test line. We prove that these estimators have smaller variance than the line transect estimators, and indeed are related to them by the Rao-Blackwell process. In the improved estimators, the cubed intercept length is replaced by a moment of the distance between two points in the section profile. This can be computed as a moment of the set covariance function, which in turn is computable using the fast Fourier transform. We also derive an isoperimetric-type inequality between the improved estimator and the area-weighted 3/2th moment of the profile areas. Finally, we present two practical applications to particles of silicon carbide and to synaptic boutons in brain tissue. We estimate the variance of the technique and the gain in efficiency over line transect techniques; the efficiency improvement appears to be as much as one order of magnitude.
We define a class of tessellation models based on perturbing or deforming standard tessellations such as the Voronoi tessellation. We show how distributions over this class of ‘deformed’ tessellations can be used to define prior distributions for models based on tessellations, and how inference for such models can be carried out using Markov chain Monte Carlo methods; stability properties of the algorithms are investigated. Our approach applies not only to fixed dimension problems, but also to variable dimension problems, in which the number of cells in the tessellation is unknown. We illustrate our methods with two real examples. The first relates to reconstructing animal territories, represented by the individual cells of a tessellation, from observation of an inhomogeneous Poisson point process. The second example involves the analysis of an image of a cross-section through a sample of metal, with the tessellation modelling the micro-crystalline structure of the metal.
This paper introduces a new graph constructed from a point process. The idea is to connect a point with its nearest neighbour, then to the second nearest and continue this process until the point belongs to the interior of the convex hull of these nearest neighbours. The number of such neighbours is called the degree of a point. We derive the distribution of the degree of the typical point in a Poisson process, prove a central limit theorem for the sum of degrees, and propose an edge-corrected estimator of the distribution of the degree that is unbiased for a stationary Poisson process. Simulation studies show that this degree is a useful concept that allows the separation of clustering and repulsive behaviour of point processes.
Distance measurements are useful tools in stochastic geometry. For a Boolean model Z in ℝd, the classical contact distribution functions allow the estimation of important geometric parameters of Z. In two previous papers, several types of generalized contact distributions have been investigated and applied to stationary and nonstationary Boolean models. Here, we consider random sets Z which are generated as the union sets of Poisson processes X of k-flats, k ∈ {0, …, d-1}, and study distances from a fixed point or a fixed convex body to Z. In addition, we also consider the distances from a given flat or a flag consisting of flats to the individual members of X and investigate the associated process of nearest points in the flats of X. In particular, we discuss to which extent the directional distribution of X is determined by this point process. Some of our results are presented for more general stationary processes of flats.
Results about stationary Poisson hyperplane processes and the induced hyperplane mosaics are extended to the case where, instead of stationarity, it is only assumed that the intensity measure has a (possibly continuous) density with respect to some translation-invariant measure. Intensities and quermass densities, which are constant in the stationary case, are then replaced by functions. In a similar way, the associated zonoid (Matheron'sSteiner convex set) is generalized.
In order to increase the variety of feasible models for random stationary tessellations (mosaics), two operations acting on tessellations are studied: superposition and iteration (the latter is also referred to as nesting). The superposition of two planar tessellations is the superposition of the edges of the cells of both tessellations. The iteration of tessellations means that one tessellation is chosen as a ‘frame’ tessellation. The single cells of this ‘frame’ are simultaneously and independently subdivided by cut-outs of tessellations of an independent and identically distributed sequence of tessellations. In the present paper, we investigate the limits for sequences of tessellations that are generated by consecutive application of superposition or iteration respectively. Sequences of (renormalised) superpositions of stationary planar tessellations converge weakly to Poisson line tessellations. For consecutive iteration the notion of stability of distributions is adapted and necessary conditions are formulated for those tessellations which may occur as limits.
Generalizing Matérn's (1960) two hard-core processes, marked point processes are considered as models for systems of varying-sized, nonoverlapping convex grains. A Poisson point process is generated and grains are placed at the points. The grains are supposed to have varying sizes but the same shape as a fixed convex grain, with spheres as an important special case. The pattern is thinned so that no grains overlap.We consider the thinning probability of a ‘typical point’ under various thinning procedures, the volume fraction of the resulting system of grains, the relation between the intensity of the point processes before and after thinning, and the corresponding size distributions. The study is inspired by problems in material fatigue, where cracks are supposed to be initiated by large defects.
Among the disks centered at a typical particle of the two-dimensionalPoisson-Voronoi tessellation, let Rm be the radius of the largest included within the polygonal cell associated with that particle and RM be the radius of the smallest containing that polygonal cell. In this article, we obtain the joint distribution of Rm and RM. This result is derived from the covering properties of the circle due toStevens, Siegel and Holst. The same method works for studying the Crofton cell associated with the Poisson line process in the plane. The computation of the conditional probabilitiesP{RM ≥ r + s | Rm = r}reveals the circular property of the Poisson-Voronoi typical cells(as well as the Crofton cells) having a ‘large’ in-disk.
Galton-Watson forests consisting of N roots (or trees) and n nonroot vertices are studied. The limit distributions of the number of leaves in such a forest are obtained. By a leaf we mean a vertex from which there are no arcs emanating.
Given sets C and R in d-dimensional space, take a constant intensity Poisson point process on R; the associated scan statistic S is the maximum number of Poisson points in any translate of C. As R becomes large with C fixed, bounded and open but otherwise arbitrary, the distribution of Sbecomes concentrated on at most two adjacent integers. A similar result holds when the underlying Poisson process is replaced by a binomial point process, and these results can be extended to a large class of nonuniform distributions. Also, similar results hold for other finite-range scanning schemes such as the clique number of a geometric graph.
Let X, X1, X2, … be a sequence of i.i.d. random closed subsets of a certain locally compact, Hausdorff and separable base space E. For a fixed normalised Borel measure μ on E, we investigate the behaviour of random variables μ(E \ (X1 ∪ ∙ ∙ ∙ ∪ Xn)) for large n. The results obtained include a description of variance asymptotics, strong law of large numbers and a central limit theorem. As an example we give an application of the developed methods for asymptotic analysis of the mean width of convex hulls generated by uniform samples from a multidimensional ball. Another example deals with unions of random balls in ℝd with centres distributed according to a spherically-symmetric heavy-tailed law.
We propose and study a random crystalline algorithm (a discrete approximation) of the Gauss curvature flow of smooth simple closed convex curves in ℝ2 as a stepping stone to the full understanding of such phenomena as the wearing process of stones on a beach.
Let be the mean normal measure of a stationary random set Z in the extended convex ring in ℝd. For k ∈ {1,…,d-1}, connections are shown between and the mean of . Here, the mean is understood to be with respect to the random isotropic k-dimensional linear subspace ξk and the mean normal measure of the intersection is computed in ξk. This mean to be well defined, a suitable spherical lifting must be applied to before averaging. A large class of liftings and their resulting means are discussed. In particular, a geometrically motivated lifting is presented, for which the mean of liftings of determines uniquely for any fixed k ∈ {2,…,d-1}.
Recently, systematic sampling on the circle and the sphere has been studied by Gual-Arnau and Cruz-Orive (2000) from a design-based point of view. In this note, it is shown that their mathematical model for the covariogram is, in a model-based statistical setting, a special case of the p-order shape model suggested by Hobolth, Pedersen and Jensen (2000) and Hobolth, Kent and Dryden (2002) for planar objects without landmarks. Benefits of this observation include an alternative variance estimator, applicable in the original problem of systematic sampling. In a wider perspective, the paper contributes to the discussion concerning design-based versus model-based stereology.
Geometric sampling, and local stereology in particular, often require observations at isotropic random directions on the sphere, and some sort of systematic design on the sphere becomes necessary on grounds of efficiency and practical applicability. Typically, the relevant probes are of nucleator type, in which several rays may be contained in a sectioning plane through a fixed point (e.g. through a nucleolus within a biological cell). The latter requirement considerably reduces the choice of design in practice; in this paper, we concentrate on a nucleator design based on splitting the sphere into regions of equal area, but not of identical shape; this design is pseudosystematic rather than systematic in a strict sense. Firstly, we obtain useful exact representations of the variance of an estimator under pseudosystematic sampling on the sphere. Then we adopt a suitable covariogram model to obtain a variance predictor from a single sample of arbitrary size, and finally we examine the prediction accuracy by way of simulation on a synthetic particle model.
The usual direct method of simulation for cluster processes requires the generation of the parent point process over a region larger than the actual observation window, since we have to allow for all possible parents giving rise to observed daughter points, and some of these parents may fall outwith the observation window. When there is no a priori bound on the distance between parent and child then we have to take care to control approximations arising from edge effects. In this paper, we present a simulation method which requires simulation only of those parent points actually giving rise to observed daughter points, thus avoiding edge effect approximation. The idea is to replace the cluster distribution by one which is conditioned to plant at least one daughter point in the observation window, and to modify the parent process to have an inhomogeneous intensity exactly balancing the effect of the conditioning. We furthermore show how the method extends to cases involving infinitely many potential parents, for example gamma-Poisson processes and shot-noise G-Cox processes, allowing us to avoid approximation due to truncation of the parent process.