We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In designing a network to link n points in a square of area n, we might be guided by the following two desiderata. First, the total network length should not be much greater than the length of the shortest network connecting all points. Second, the average route length (taken over source-destination pairs) should not be much greater than the average straight-line distance. How small can we make these two excesses? Speaking loosely, for a nondegenerate configuration, the total network length must be at least of order n and the average straight-line distance must be at least of order n1/2, so it seems implausible that a single network might exist in which the excess over the first minimum is o(n) and the excess over the second minimum is o(n1/2). But in fact we can do better: for an arbitrary configuration, we can construct a network where the first excess is o(n) and the second excess is almost as small as O(log n). The construction is conceptually simple and uses stochastic methods: over the minimum-length connected network (Steiner tree) superimpose a sparse stationary and isotropic Poisson line process. Together with a few additions (required for technical reasons), the mean values of the excess for the resulting random network satisfy the above asymptotics; hence, a standard application of the probabilistic method guarantees the existence of deterministic networks as required (speaking constructively, such networks can be constructed using simple rejection sampling). The key ingredient is a new result about the Poisson line process. Consider two points a distance r apart, and delete from the line process all lines which separate these two points. The resulting pattern of lines partitions the plane into cells; the cell containing the two points has mean boundary length approximately equal to 2r + constant(log r). Turning to lower bounds, consider a sequence of networks in satisfying a weak equidistribution assumption. We show that if the first excess is O(n) then the second excess cannot be
Let D be the punctured unit disk. It is easy to see that no pair x, y in D can cover D in the sense that D cannot be contained in the union of the unit disks centred at x and y. With this fact in mind, let Vn = {X1, X2, …, Xn}, where X1, X2, … are random points sampled independently from a uniform distribution on D. We prove that, with asymptotic probability 1, there exist two points in Vn that cover all of Vn.
Generalized local mean normal measures μz, z ∈ Rd, are introduced for a nonstationary process X of convex particles. For processes with strictly convex particles it is then shown that X is weakly stationary and weakly isotropic if and only if μz is rotation invariant for all z ∈ Rd. The paper is concluded by extending this result to processes of cylinders, generalizing Theorem 1 of Schneider (2003).
In this paper we consider a tessellation V generated by a homogeneous Poisson process Φ in Rd and, furthermore, the random set of spheres with centres being the points in Φ and having radii equal to half the distance to their closest neighbouring point in Φ. In Rd we give an integral formula for the correlation between the volume of the typical cell and the volume of the sphere in the typical cell, and we also show that this correlation is strictly positive. Furthermore, on the real line we give an analytical expression for the correlation, and in the plane and in space we give simplified integral formulae. Numerical values for the correlation for d = 2,…,7 are also given.
We consider the generalized version in continuous time of the parking problem of Knuth introduced in Bansaye (2006). Files arrive following a Poisson point process and are stored on a hardware identified with the real line, at the right of their arrival point. Here we study the evolution of the endpoints of the data block straddling 0, which is empty at time 0 and is equal to R at a deterministic time.
The covariogram gK(x) of a convex body K ⊆ Ed is the function which associates to each x ∈ Ed the volume of the intersection of K with K + x, where Ed denotes the Euclidean d-dimensional space. Matheron (1986) asked whether gK determines K, up to translations and reflections in a point. Positive answers to Matheron's question have been obtained for large classes of planar convex bodies, while for d ≥ 3 there are both positive and negative results. One of the purposes of this paper is to sharpen some of the known results on Matheron's conjecture indicating how much of the covariogram information is needed to get the uniqueness of determination. We indicate some subsets of the support of the covariogram, with arbitrarily small Lebesgue measure, such that the covariogram, restricted to those subsets, identifies certain geometric properties of the body. These results are more precise in the planar case, but some of them, both positive and negative ones, are proved for bodies of any dimension. Moreover some results regard most convex bodies, in the Baire category sense. Another purpose is to extend the class of convex bodies for which Matheron's conjecture is confirmed by including all planar convex bodies possessing two nondegenerate boundary arcs being reflections of each other.
In this article a collection of random self-similar fractal dendrites is constructed, and their Hausdorff dimension is calculated. Previous results determining this quantity for random self-similar structures have relied on geometrical properties of an underlying metric space or the scaling factors being bounded uniformly away from 0. However, using a percolative argument, and taking advantage of the tree-like structure of the sets considered here, it is shown that conditions such as these are not necessary. The scaling factors of the recursively defined structures in consideration form what is known as a multiplicative cascade, and results about the height of this random object are also obtained.
Let n points be randomly and independently placed in Rd according to a common probability law. It is known that the expected volume for the convex hull of these points, in the cases where n - d ≥ 2 and even, is related linearly to expected volumes of the convex hulls for j points, j < n. We show that similar identities for these volumes hold almost surely - and in contexts where independence and communality of law do not apply. New geometric and topological identities developed here provide a foundation for this result.
Intersection densities are introduced for a large class of nonstationary Poisson processes of hypersurfaces and inequalities for them are proved. In doing so, similar results from both Wieacker (1986) and Schneider (2003) are summarized in one theorem and the concept of an associated zonoid of a Poisson process of hypersurfaces is generalized to a nonstationary setting.
Under the unifying umbrella of a general result of Penrose and Yukich (Annals of Applied Probability13 (2003), 277-303) we give laws of large numbers (in the Lp sense) for the total power-weighted length of several nearest-neighbour-type graphs on random point sets in ℝd, d ∈ ℕ. Some of these results are known; some are new. We give limiting constants explicitly, where previously they have been evaluated in less generality or not at all. The graphs we consider include the k-nearest-neighbours graph, the Gabriel graph, the minimal directed spanning forest, and the on-line nearest-neighbour graph.
We consider the Voronoi tessellation based on a stationary Poisson process N in ℝd. We provide a complete and explicit description of the Palm distribution describing N as seen from a randomly chosen (typical) point on a k-face of the tessellation. In particular, we compute the joint distribution of the d−k+1 neighbours of the k-face containing the typical point. Using this result as well as a fundamental general relationship between Palm probabilities, we then derive some properties of the typical k-face and its neighbours. Generalizing recent results of Muche (2005), we finally provide the joint distribution of the typical edge (typical 1-face) and its neighbours.
The random surface measure of a stationary Boolean model with grains from the convex ring is considered. A sufficient condition and a necessary condition for the existence of the density of the second-order moment measure of are given and a representation of this density is derived. As applications, the surface pair correlation functions of a Boolean model with spheres and a Boolean model with randomly oriented right circular cylinders in ℝ3 are determined.
The volume fraction of the intact grains of the dead leaves model with spherical grains of equal size is 2−d in d dimensions. This is the volume fraction of the original Stienen model. Here we consider some variants of these models: the dead leaves model with grains of a fixed convex shape and possibly random sizes and random orientations, and a generalisation of the Stienen model with convex grains growing at random speeds. The main result of this paper is that if the radius distribution in the dead leaves model equals the speed distribution in the Stienen model, then the volume fractions of the two models are the same in this case also. Furthermore, we show that for grains of a fixed shape and orientation, centrally symmetric sets give the highest volume fraction, while simplices give the lowest. If the grains are randomly rotated, then the volume fraction achieves its highest value only for spheres.
A Euclidean first passage percolation model describing the competing growth between k different types of infection is considered. We focus on the long-time behavior of this multitype growth process and we derive multitype shape results related to its morphology.
For a stationary random closed set Ξ in ℝd it is well known that the first-order characteristics volume fraction VV, surface intensity SV and spherical contact distribution function Hs(t) are related by
The aim of this article is to present a general “large deviations approach” to the geometry of polytopes spanned by random points with independent coordinates. The origin of our work is in the study of the structure of ±1-polytopes, the convex hulls of subsets of the combinatorial cube . Understanding the complexity of this class of polytopes is important for the “polyhedral combinatorics” approach to combinatorial optimization, and was put forward by Ziegler in [20]. Many natural questions regarding the behaviour of ±1-polytopes in high dimensions are open, since, for many important geometric parameters, low-dimensional intuition does not help to identify the extremal ±1-polytopes. The study of random ±1-polytopes sheds light to some of these questions, the main reason being that random behaviour is often the extremal one.
The small-world phenomenon, the principle that we are all linked by a short chain of intermediate acquaintances, has been investigated in mathematics and social sciences. It has been shown to be pervasive both in nature and in engineering systems like the World Wide Web. Work of Jon Kleinberg has shown that people, using only local information, are very effective at finding short paths in a network of social contacts. In this paper we argue that the underlying key to finding short paths is scale invariance. In order to appreciate scale invariance we suggest a continuum setting, since true scale invariance happens at all scales, something which cannot be observed in a discrete model. We introduce a random-connection model that is related to continuum percolation, and we prove the existence of a unique scale-free model, among a large class of models, that allows the construction, with high probability, of short paths between pairs of points separated by any distance.
The existence and uniqueness of maximum likelihood estimators for the time and range parameters in random sequential adsorption models are investigated.
We study a random field obtained by counting the number of balls containing a given point when overlapping balls are thrown at random according to a Poisson random measure. We describe a microscopic process which exhibits multifractional behavior. We are particularly interested in the local asymptotic self-similarity (LASS) properties of the field, as well as in its X-ray transform. We obtain two different LASS properties when considering the asymptotics either in law or in the sense of second-order moments, and prove a relationship between the LASS behavior of the field and the LASS behavior of its X-ray transform. These results can be used to model and analyze porous media, images, or connection networks.
In a recent paper, Kleinberg (2000) considered a small-world network model consisting of a d-dimensional lattice augmented with shortcuts. The probability of a shortcut being present between two points decays as a power, r-α, of the distance, r, between them. Kleinberg showed that greedy routeing is efficient if α = d and that there is no efficient decentralised routeing algorithm if α ≠ d. The results were extended to a continuum model by Franceschetti and Meester (2003). In our work, we extend the result to more realistic models constructed from a Poisson point process wherein each point is connected to all its neighbours within some fixed radius, and possesses random shortcuts to more distant nodes as described above.