To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we develop a unified approach for stochastic load balancing on various multiserver systems. We expand the four partial orderings defined in Marshall and Olkin, by defining a new ordering based on the set of functions that are symmetric, L-subadditive and convex in each variable. This new partial ordering is shown to be equivalent to the previous four orderings for comparing deterministic vectors but differs for random vectors. Sample-path criteria and a probability enumeration method for the new stochastic ordering are established and the ordering is applied to various fork-join queues, routing and scheduling problems. Our results generalize previous work and can be extended to multivariate stochastic majorization which includes tandem queues and queues with finite buffers.
If φ is a convex function and X a random variable then (by Jensen's inequality) ψ φ (X) = Eφ (X) – φ (EX) is non-negative and 0 iff either φ is linear in the range of X or X is degenerate. So if φ is not linear then ψ φ (X) is a measure of non-degeneracy of the random variable X. For φ (x) = x2, ψ φ (X) is simply the variance V(X) which is additive in the sense that V(X + Y) = V(X) + V(Y) if X and Y are uncorrelated. In this note it is shown that if φ ″(·) is monotone non-increasing then ψ φ is sub-additive for all (X, Y) such that EX ≧ 0, P(Y ≧ 0) = 1 and E(X | Y) = EX w.p.l, and is additive essentially only if φ is quadratic. Thus, it confirms the unique role of variance as a measure of non-degeneracy. An application to branching processes is also given.
In this paper we first prove an arrangement-decreasing property of partial sums of independent random variables when they are partially ordered through the likelihood ratio ordering. We then apply a similar argument to obtain a stochastic ordering of random processes via a comparison of their parameter functions, with special applications to Poisson and Wiener processes. Finally, in Section 4 we present some applications in reliability theory, queueing, and first-passage problems.
The bivariate characterization of stochastic ordering relations given by Shanthikumar and Yao (1991) is based on collections of bivariate functions g(x, y), where g(x, y) and g(y, x) satisfy certain properties. We give an alternate characterization based on collections of pairs of bivariate functions, g1(x, y) and g2(x, y), satisfying certain properties. This characterization allows us to extend results for single machine scheduling of jobs that are identical except for their processing times, to jobs that may have different costs associated with them.
Assume that we want to estimate – σ, the abscissa of convergence of the Laplace transform. We show that no non-parametric estimator of σ can converge at a faster rate than (log n)–1, where n is the sample size. An optimal convergence rate is achieved by an estimator of the form where xn = O(log n) and is the mean of the sample values overshooting xn. Under further parametric restrictions this (log n)–1 phenomenon is also illustrated by a weak convergence result.
The Luria–Delbrück distribution arises in birth-and-mutation processes in population genetics that have been systematically studied for the last fifty years. The central result reported in this paper is a new recursion relation for computing this distribution which supersedes all past results in simplicity and computational efficiency: p0 = e–m; where m is the expected number of mutations. A new relation for the asymptotic behavior of pn (≈ c/n2) is also derived. This corresponds to the probability of finding a very large number of mutants. A formula for the z-transform of the distribution is also reported.
We give a finite form for the probability mass function of the wrapped Poisson distribution, together with a probabilistic proof. We also describe briefly its connection with existing results.
We present some monotonicity and convexity properties for the sequence of partial sums associated with a sequence of non-negative independent identically distributed random variables. These results are applied to a system of parallel queues with Bernoulli routing, and are useful in establishing a performance comparison between two scheduling strategies in multiprocessor systems.