To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Likelihood ratios are used in computer simulation to estimate expectations with respect to one law from simulation of another. This importance sampling technique can be implemented with either the likelihood ratio at the end of the simulated time horizon or with a sequence of likelihood ratios at intermediate times. Since a likelihood ratio process is a martingale, the intermediate values are conditional expectations of the final value and their use introduces no bias.
We provide conditions under which using conditional expectations in this way brings guaranteed variance reduction. We use stochastic orderings to get positive dependence between a process and its likelihood ratio, from which variance reduction follows. Our analysis supports the following rough statement: for increasing functionals of associated processes with monotone likelihood ratio, conditioning helps. Examples are drawn from recursively defined processes, Markov chains in discrete and continuous time, and processes with Poisson input.
Optimization problems in cancer radiation therapy are considered, with the efficiency functional defined as the difference between expected survival probabilities for normal and neoplastic tissues. Precise upper bounds of the efficiency functional over natural classes of cellular response functions are found. The ‘Lipschitz' upper bound gives rise to a new family of probability metrics. In the framework of the ‘m hit-one target' model of irradiated cell survival the problem of optimal fractionation of the given total dose into n fractions is treated. For m = 1, n arbitrary, and n = 1, 2, m arbitrary, complete solution is obtained. In other cases an approximation procedure is constructed. Stability of extremal values and upper bounds of the efficiency functional with respect to perturbation of radiosensitivity distributions for normal and tumor tissues is demonstrated.
One expects, intuitively, that the total damage caused by an epidemic increases, in a certain sense, with the infection intensity exerted by the infectives during their lifelength. The original object of the present work is to make precise in which probabilistic terms such a statement does indeed hold true, when the spread of the disease is described by a collective Reed–Frost model and the global cost is represented by the final size and severity. Surprisingly, this problem leads us to introduce an order relation for -valued random variables, unusual in the literature, based on the descending factorial moments. Further applications of the ordering occur when comparing certain sampling procedures through the number of un-sampled individuals. In particular, it is used to reinforce slightly comparison results obtained earlier for two such samplings.
We show that using the FIFO service discipline at single server stations with ILR (increasing likelihood ratio) service time distributions in networks of monotone queues results in stochastically earlier departures throughout the network. The converse is true at stations with DLR (decreasing likelihood ratio) service time distributions. We use these results to establish the validity of the following comparisons:
(i) The throughput of a closed network of FIFO single-server queues will be larger (smaller) when the service times are ILR (DLR) rather than exponential with the same means.
(ii) The total stationary number of customers in an open network of FIFO single-server queues with Poisson external arrivals will be stochastically smaller (larger) when the service times are ILR (DLR) rather than exponential with the same means.
We also give a surprising counterexample to show that although FIFO stochastically maximizes the number of departures by any time t from an isolated single-server queue with IHR (increasing hazard rate, which is weaker than ILR) service times, this is no longer true for networks of more than one queue. Thus the ILR assumption cannot be relaxed to IHR.
Finally, we consider multiclass networks of exponential single-server queues, where the class of a customer at a particular station determines its service rate at that station, and show that serving the customer with the highest service rate (which is SEPT — shortest expected processing time first) results in stochastically earlier departures throughout the network, among all preemptive work-conserving policies. We also show that a cµ rule stochastically maximizes the number of non-defective service completions by any time t when there are random, agreeable, yields.
We consider the relationships among the stochastic ordering of random variables, of their random partial sums, and of the number of events of a point process in random intervals. Two types of result are obtained. Firstly, conditions are given under which a stochastic ordering between sequences of random variables is inherited by (vectors of) random partial sums of these variables. These results extend and generalize theorems known in the literature. Secondly, for the strong, (increasing) convex and (increasing) concave stochastic orderings, conditions are provided under which the numbers of events of a given point process in two ordered random intervals are also ordered.
These results are applied to some comparison problems in queueing systems. It is shown that if the service times in two M/GI/1 systems are compared in the sense of the strong stochastic ordering, or the (increasing) convex or (increasing) concave ordering, then the busy periods are compared for the same ordering. Stochastic bounds in the sense of increasing convex ordering on waiting times and on response times are provided for queues with bulk arrivals. The cyclic and Bernoulli policies for customer allocation to parallel queues are compared in the transient regime using the increasing convex ordering. Comparisons for the five above orderings are established for the cycle times in polling systems.
In a discrete-time renewal process {Nk, k = 0, 1, ·· ·}, let Zk and Ak be the forward recurrence time and the renewal age, respectively, at time k. In this paper, we prove that if the inter-renewal time distribution is discrete DFR (decreasing failure rate) then both {Ak, k = 0, 1, ·· ·} and {Zk, k = 0, 1, ·· ·} are monotonically non-decreasing in k in hazard rate ordering. Since the results can be transferred to the continuous-time case, and since the hazard rate ordering is stronger than the ordinary stochastic ordering, our results strengthen the corresponding results of Brown (1980). A sufficient condition for {Nk+m – Nk, k = 0, 1, ·· ·} to be non-increasing in k in hazard rate ordering as well as some sufficient conditions for the opposite monotonicity results are given. Finally, Brown's conjecture that DFR is necessary for concavity of the renewal function in the continuous-time case is discussed.
In this paper, we develop a unified approach for stochastic load balancing on various multiserver systems. We expand the four partial orderings defined in Marshall and Olkin, by defining a new ordering based on the set of functions that are symmetric, L-subadditive and convex in each variable. This new partial ordering is shown to be equivalent to the previous four orderings for comparing deterministic vectors but differs for random vectors. Sample-path criteria and a probability enumeration method for the new stochastic ordering are established and the ordering is applied to various fork-join queues, routing and scheduling problems. Our results generalize previous work and can be extended to multivariate stochastic majorization which includes tandem queues and queues with finite buffers.
If φ is a convex function and X a random variable then (by Jensen's inequality) ψ φ (X) = Eφ (X) – φ (EX) is non-negative and 0 iff either φ is linear in the range of X or X is degenerate. So if φ is not linear then ψ φ (X) is a measure of non-degeneracy of the random variable X. For φ (x) = x2, ψ φ (X) is simply the variance V(X) which is additive in the sense that V(X + Y) = V(X) + V(Y) if X and Y are uncorrelated. In this note it is shown that if φ ″(·) is monotone non-increasing then ψ φ is sub-additive for all (X, Y) such that EX ≧ 0, P(Y ≧ 0) = 1 and E(X | Y) = EX w.p.l, and is additive essentially only if φ is quadratic. Thus, it confirms the unique role of variance as a measure of non-degeneracy. An application to branching processes is also given.
In this paper we first prove an arrangement-decreasing property of partial sums of independent random variables when they are partially ordered through the likelihood ratio ordering. We then apply a similar argument to obtain a stochastic ordering of random processes via a comparison of their parameter functions, with special applications to Poisson and Wiener processes. Finally, in Section 4 we present some applications in reliability theory, queueing, and first-passage problems.
The bivariate characterization of stochastic ordering relations given by Shanthikumar and Yao (1991) is based on collections of bivariate functions g(x, y), where g(x, y) and g(y, x) satisfy certain properties. We give an alternate characterization based on collections of pairs of bivariate functions, g1(x, y) and g2(x, y), satisfying certain properties. This characterization allows us to extend results for single machine scheduling of jobs that are identical except for their processing times, to jobs that may have different costs associated with them.
Assume that we want to estimate – σ, the abscissa of convergence of the Laplace transform. We show that no non-parametric estimator of σ can converge at a faster rate than (log n)–1, where n is the sample size. An optimal convergence rate is achieved by an estimator of the form where xn = O(log n) and is the mean of the sample values overshooting xn. Under further parametric restrictions this (log n)–1 phenomenon is also illustrated by a weak convergence result.
The Luria–Delbrück distribution arises in birth-and-mutation processes in population genetics that have been systematically studied for the last fifty years. The central result reported in this paper is a new recursion relation for computing this distribution which supersedes all past results in simplicity and computational efficiency: p0 = e–m; where m is the expected number of mutations. A new relation for the asymptotic behavior of pn (≈ c/n2) is also derived. This corresponds to the probability of finding a very large number of mutants. A formula for the z-transform of the distribution is also reported.
We give a finite form for the probability mass function of the wrapped Poisson distribution, together with a probabilistic proof. We also describe briefly its connection with existing results.
We present some monotonicity and convexity properties for the sequence of partial sums associated with a sequence of non-negative independent identically distributed random variables. These results are applied to a system of parallel queues with Bernoulli routing, and are useful in establishing a performance comparison between two scheduling strategies in multiprocessor systems.
The class of subexponential distributions S is characterized by F(0) = 0, 1 − F(2)(x) ~ 2(1 − F(x)) as x → ∞. In this paper we consider a subclass of S for which the relation 1 − F(2)(x) − 2(1 − F(x)) + (1 − F(x))2 = o(a(x)) as x → ∞ holds, where α is a positive function satisfying α(X) = 0(1 − F(x)) (x → ∞).
Generalizing known results for special examples, we derive a Khintchine type decomposition of probability measures on symmetric hypergroups. This result is based on a triangular central limit theorem and a discussion of conditions ensuring that the set of all factors of a probability measure is weakly compact. By our main result, a probability measure satisfying certain restrictions can be written as a product of indecomposable factors and a factor in I0(K), the set of all measures having decomposable factors only. Some contributions to the classification of I0(K) are given for general symmetric hypergroups and applied to several families of examples like finite symmetric hypergroups and hypergroup joins. Furthermore, all results are discussed in detail for a class of discrete symmetric hypergroups which are generated by infinitely many joins, for a class of countable compact hypergroups, for Sturm-Liouville hypergroups on [0, ∞[ and, finally, for polynomial hypergroups.
We study negative definite functions on a Hilbert space and use their properties to give a proof of the Lévy-Khinchin formula for an infinitely divisible probability distribution on .
Distribution tails F(t) = F(t, ∞) are considered for which and as t → ∞. A real analytic proof is obtained of a theorem by Chover, Wainger and Ney, namely that .
In doing so, a technique is introduced which provides many other results with a minimum of analysis. One such result strengthens and generalizes the various known results on distribution tails of random sums.
Additionally, the closure and factorization properties for subexponential distributions are investigated further and extended to distributions with exponential tails.
A churning transformation can be defined on probability measures by an infinite sequence of finite permutations of mass. Continuity and absolute continuity of measures are invariants for such transformations but it is shown that certain probability measures whose Fourier-Stieltjes transforms fail to vanish at infinity may be churned into measures whose transforms do vanish in this sense.
A simple technique for obtaining bounds in terms of means and variances for the expectations of certain functions of random variables in a given class is examined. The bounds given are sharp in the sense that they are attainable by at least one random variable in the class. This technique is applied to obtain bounds for moment generating functions, the coefficient of skewness and parameters associated with branching processes. In particular an improved lower bound for the Malthusian parameter in an age-dependent branching process is derived.