To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Criteria are determined for the variance to mean ratio to be greater than one (over-dispersed) or less than one (under-dispersed). This is done for random variables which are functions of a Markov chain in continuous time, and for the counts in a simple point process on the line. The criteria for the Markov chain are in terms of the infinitesimal generator and those for the point process in terms of the conditional intensity. Examples include a conjecture of Faddy (1994). The case of time-reversible point processes is particularly interesting, and here underdispersion is not possible. In particular, point processes which arise from Markov chains which are time-reversible, have finitely many states and are irreducible are always overdispersed.
In this paper we study an approximation of system reliability using one-step conditioning. It is shown that, without greatly increasing the computational complexity, the conditional method may be used instead of the usual minimal cut and minimal path bounds to obtain more accurate approximations and bounds. We also study the conditions under which the approximations are bounds on the reliability. Some further extensions are also presented.
The characterization of the exponential distribution via the coefficient of the variation of the blocking time in a queueing system with an unreliable server, as given by Lin (1993), is improved by substantially weakening the conditions. Based on the coefficient of variation of certain random variables, including the blocking time, the normal service time and the minimum of the normal service and the server failure times, two new characterizations of the exponential distribution are obtained.
We consider the convex ordering for random vectors and some weaker versions of it, like the convex ordering for linear combinations of random variables. First we establish conditions of stochastic equality for random vectors that are ordered by one of the convex orderings. Then we establish necessary and sufficient conditions for the convex ordering to hold in the case of multivariate normal distributions and sufficient conditions for the positive linear convex ordering (without the restriction to multi-normality).
The Brownian density process is a Gaussian distribution-valued process. It can be defined either as a limit of a functional over a Poisson system of independent Brownian particles or as a solution of a stochastic partial differential equation with respect to Gaussian martingale measure. We show that, with an appropriate change in the initial distribution of the infinite particle system, the limiting density process is non-Gaussian and it solves a stochastic partial differential equation where the initial measure and the driving measure are non-Gaussian, possibly having infinite second moment.
Consider two systems, labeled system 1 and system 2, each with m components. Suppose component i in system k, k = 1, 2, is subjected to a sequence of shocks occurring randomly in time according to a non-explosive counting process {Γ i(t), t > 0}, i = 1, ···, m. Assume that Γ1, · ··, Γm are independent of Mk = (Mk,1, · ··, Mk,m), the number of shocks each component in system k can sustain without failure. Let Zk,i be the lifetime of component i in system k. We find conditions on processes Γ1, · ··, Tm such that some stochastic orders between M1 and M2 are transformed into some stochastic orders between Z1 and Z2. Most results are obtained under the assumption that Γ1, · ··, Γm are independent Poisson processes, but some generalizations are possible and can be seen from the proofs of theorems.
This note gives the rate for a Wasserstein distance between the distribution of a Bernoulli process on discrete time and that of a Poisson process, using Stein's method and Palm theory. The result here highlights the possibility that the logarithmic factor involved in the upper bounds established by Barbour and Brown (1992) and Barbour et al. (1995) may be superfluous in the true Wasserstein distance between the distributions of a point process and a Poisson process.
To study the limiting behaviour of the random running-time of the FIND algorithm, the so-called FIND process was introduced by Grübel and Rösler [1]. In this paper an approach for determining the nth moment function is presented. Applied to the second moment this provides an explicit expression for the variance.
This paper discusses the distribution of tumor size at detection derived within the framework of a new stochastic model of carcinogenesis. This distribution assumes a simple limiting form, with age at detection tending to infinity which is found to be a generalization of the distribution that arises in the length-biased sampling. Two versions of the model are considered with reference to spontaneous and induced carcinogenesis; both of them show similar asymptotic behavior. When the limiting distribution is applied to real data analysis its adequacy can be tested through testing the conditional independence of the size, V, and the age, A, at detection given A > t*, where the value of t* is to be estimated from the given sample. This is illustrated with an application to data on premenopausal breast cancer. The proposed distribution offers the prospect of the estimation of some biologically meaningful parameters descriptive of the temporal organization of tumor latency. An estimate of the model stability to the prior distribution of tumor size and some other stability results for the Bayes formula are given.
This paper is concerned with the preservation of unimodality under coherent structures of independent components having a common life distribution function. This result in a way generalizes a result of Alam [1], as Alam's result indirectly also deals with preservation of unimodality for (n – i + 1)-out-of-n systems of independent and identically distributed components. The usefulness of this property of coherent systems in obtaining sharper upper bounds on the reliability of the concerned system has been illustrated below for a bridge structure with components having a gamma life distribution function.
Let X1, X2,· ·· be a (linear or circular) sequence of trials with three possible outcomes (say S, S∗ or F) in each trial. In this paper, the waiting time for the first appearance of an S-run of length k or an S∗-run of length r is systematically investigated. Exact formulae and Chen-Stein approximations are derived for the distribution of the waiting times in both linear and circular problems and their asymptotic behaviour is illustrated. Probability generating functions are also obtained when the trials are identical. Finally, practical applications of these results are discussed in some detail.
In this paper we investigate the characterizations of life distributions under four stochastic orderings, < p, < (p), < (p) and < L, by a unified method. Conditions for the stochastic equality of two non-negative random variables under the four stochastic orderings are derived. Many previous results are consequences. As applications, we provide characterizations of life distributions by a single value of their Laplace transforms under orderings < p and < (p) and their moment generating functions under orderings < p and < (p). Under ordering < L, a characterization is given by the expected value of a strictly completely monotone function. The conditions for the stochastic equality of two non-negative vectors under the stochastic orderings < (p), < (p) and < L are presented in terms of the Laplace transforms and moment generating functions of their extremes and sample means. Characterizations of the exponential distribution among L and L life distribution classes are also given.
Vinogradov (1973) used the Laplace transform to characterize the IFR class of life distributions and later Block and Savits (1980) extended the characterization to the main reliability classes. Here we use the same transform again to characterize the continuous time renewal equation and some properties of its solution.
The accuracy of the Normal or Poisson approximations can be significantly improved by adding part of an asymptotic expansion in the exponent. The signed-compound-Poisson measures obtained in this manner can be of the same structure as the Poisson distribution. For large deviations we prove that signed-compound-Poisson measures enlarge the zone of equivalence for tails.
In the series system (competing risks) set-up the observed data are generally accepted as the lifetime (T) and the identifier (δ) of the component causing the failure of the system. Peterson (1976) has provided bounds for the joint survival function of the component lifetimes in terms of the joint distribution of (T, δ). In the case of more complex coherent systems, there are various schemes of observation in the literature. In this paper we provide bounds for the joint and marginal survival functions of the component lifetimes in terms of the joint distribution of the data as obtained under existing and new schemes of observation. We also tackle the reverse problem of obtaining bounds for the joint distributions of the data for given marginal distributions of the component lifetimes and the distribution of the system lifetimes.
We consider probability metrics of the following type: for a class of functions and probability measures P, Q we define A unified study of such integral probability metrics is given. We characterize the maximal class of functions that generates such a metric. Further, we show how some interesting properties of these probability metrics arise directly from conditions on the generating class of functions. The results are illustrated by several examples, including the Kolmogorov metric, the Dudley metric and the stop-loss metric.
Some moment inequalities are known to be valid for non-parametric lifetime distribution classes. Here we consider one set of these inequalities, which hold for random variables that are DMRL (decreasing in mean residual life). We prove that such inequalities are satisfied by variables which are sums of DMRL random variables too, though these sums are not necessarily DMRL. Related results are shown, together with similar results valid for the stochastic comparison in mean residual life.
Let X1, X2,… be a sequence of independent random variables and let N be a positive integer-valued random variable which is independent of the Xi. In this paper we obtain some stochastic comparison results involving min {X1, X2,…, XN) and max{X1, X2,…, XN}.
The purpose of this paper is to study two notions of stochastic comparisons of non-negative random variables via ratios that are determined by their Laplace transforms. Some interpretations of the new orders are given, and various properties of them are derived. The relationships to other stochastic orders are also studied. Finally, some applications in reliability theory are described.
The sojourn time that a Markov chain spends in a subset E of its state space has a distribution that depends on the hitting distribution on E and the probabilities (resp. rates in the continuous-time case) that govern the transitions within E. In this note we characterise the set of all hitting distributions for which the sojourn time distribution is geometric (resp. exponential).