We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let X1,…,Xn be independent exponential random variables with Xi having hazard rate . Let Y1,…,Yn be a random sample of size n from an exponential distribution with common hazard rate ̃λ = (∏i=1nλi)1/n, the geometric mean of the λis. Let Xn:n = max{X1,…,Xn}. It is shown that Xn:n is greater than Yn:n according to dispersive as well as hazard rate orderings. These results lead to a lower bound for the variance of Xn:n and an upper bound on the hazard rate function of Xn:n in terms of . These bounds are sharper than those obtained by Dykstra et al. ((1997), J. Statist. Plann. Inference65, 203–211), which are in terms of the arithmetic mean of the λis. Furthermore, let X1*,…,Xn∗ be another set of independent exponential random variables with Xi∗ having hazard rate λi∗, i = 1,…,n. It is proved that if (logλ1,…,logλn) weakly majorizes (logλ1∗,…,logλn∗, then Xn:n is stochastically greater than Xn:n∗.
In this article we introduce generalizations of several well-known reliability bounds. These bounds are based on arbitrary partitions of the family of minimal path or cut sets of the system and can be used for approximating the reliability of any coherent structure with i.i.d. components. An illustration is also given of how the general results can be applied for a specific reliability structure (two-dimensional consecutive-k1 x k2-out-of-n1x n2 system) along with extensive numerical calculations revealing that, in most cases, the generalized bounds perform better than other available bounds in the literature for this system.
We propose in this paper two methods to compute Markovian bounds for monotone functions of a discrete time homogeneous Markov chain evolving in a totally ordered state space. The main interest of such methods is to propose algorithms to simplify analysis of transient characteristics such as the output process of a queue, or sojourn time in a subset of states. Construction of bounds are based on two kinds of results: well-known results on stochastic comparison between Markov chains with the same state space; and the fact that in some cases a function of Markov chain is again a homogeneous Markov chain but with smaller state space. Indeed, computation of bounds uses knowledge on the whole initial model. However, only part of this data is necessary at each step of the algorithms.
Let ε be a (single or composite) pattern defined over a sequence of Bernoulli trials. This article presents a unified approach for the study of the joint distribution of the number Sn of successes (and Fn of failures) and the number Xn of occurrences of ε in a fixed number of trials as well as the joint distribution of the waiting time Tr till the rth occurrence of the pattern and the number STr of successes (and FTr of failures) observed at that time. General formulae are developed for the joint probability mass functions and generating functions of (Xn,Sn), (Tr,STr) (and (Xn,Sn,Fn),(Tr,STr,FTr)) when Xn belongs to the family of Markov chain imbeddable variables of binomial type. Specializing to certain success runs, scans and pattern problems several well-known results are delivered as special cases of the general theory along with some new results that have not appeared in the statistical literature before.
A unifying technology is introduced for finding explicit closed form expressions for joint moment generating functions of various random quantities associated with some waiting time problems. Sooner and later waiting times are covered for general discrete- and continuous-time models. The models are either Markov chains or semi-Markov processes with a finite number of states. Waiting times associated with generalized phase-type distributions, that are of interest in survival analysis and other areas, are also covered.
This study is motivated by problems of molecular sequence comparison for multiple marker arrays with correlated distributions. In this paper, the model assumes two (or more) kinds of markers, say Markers A and B, distributed along the DNA sequence. The two primary conditions of interest are (i) many of Marker B (say ≥ m) occur, and (ii) few of Marker B (say ≤ l) occur. We title these the conditional r-scan models, and inquire on the extent to which Marker A clusters or is over-dispersed in regions satisfying condition (i) or (ii). Limiting distributions for the extremal r-scan statistics from the A array satisfying conditions (i) and (ii) are derived by extending the Chen-Stein Poisson approximation method.
In this paper, we consider positive linear operators L representable in terms of stochastic processes Z having right-continuous non-decreasing paths. We introduce the equivalent notions of derived operator and derived process of order n of L and Z, respectively. When acting on absolutely continuous functions of order n, we obtain a Taylor's formula of the same order for such operators, thus extending to a positive linear operator setting the classical Taylor's formula for differentiable functions. It is also shown that the operators satisfying Taylor's formula are those which preserve generalized convexity of order n. We illustrate the preceding results by considering discrete time processes, counting and renewal processes, centred subordinators and the Yule birth process.
Consider a janken game (scissors-paper-rock game) started by n players such that (1) the first round is played by n players, (2) the losers of each round (if any) retire from the rest of the game, and (3) the game ends when only one player (winner) is left. Let Wn be the number of rounds played through the game. Among other things, it is proved that (2/3)nWn is asymptotically (as n → ∞) distributed according to the exponential distribution with mean ⅓, provided that each player chooses one of the three strategies (scissors, paper, rock) with equal probability and independently from other players in any round.
Technology developed in a predecessor paper (Chen and Seneta (1996)) is applied to provide, in a unified manner, a sharpening of bivariate Bonferroni-type bounds on P(v1≥r, v2≥u) obtained by Galambos and Lee (1992; upper bound) and Chen and Seneta (1986; lower bound).
In the framework of quantum probability, we present a simple geometrical mechanism which gives rise to binomial distributions, Gaussian distributions, Poisson distributions, and their interrelation. More specifically, by virtue of coherent states and a toy analogue of the Bargmann transform, we calculate the probability distributions of the position observable and the Hamiltonian arising in the representation of the classic group SU(2). This representation may be viewed as a constrained harmonic oscillator with a two-dimensional sphere as the phase space. It turns out that both the position observable and the Hamiltonian have binomial distributions, but with different asymptotic behaviours: with large radius and high spin limit, the former tends to the Gaussian while the latter tends to the Poisson.
We consider the uncovered set (i.e. the complement of the union of growing random intervals) in the one-dimensional Johnson-Mehl model. Let S(z,L) be the number of components of this set at time z > 0 which intersect (0, L]. An explicit bound is known for the total variation distance between the distribution of S(z,L) and a Poisson distribution, but due to clumping of the components the bound can be rather large. We here give a bound for the total variation distance between the distribution of S(z,L) and a simple compound Poisson distribution (a Pólya-Aeppli distribution). The bound is derived by interpreting S(z,L) as the number of visits to a ‘rare’ set by a Markov chain, and applying results on compound Poisson approximation for Markov chains by Erhardsson. It is shown that under a mild condition, if z→∞ and L→∞ in a proper fashion, then both the Pólya-Aeppli and the Poisson approximation error bounds converge to 0, but the convergence of the former is much faster.
In earlier work, we investigated the dynamics of shape when rectangles are split into two. Further exploration, into the more general issues of Markovian sequences of rectangular shapes, has identified four particularly appealing problems. These problems, which lead to interesting invariant distributions on [0,1], have motivating links with the classical works of Blaschke, Crofton, D. G. Kendall, Rényi and Sulanke.
We derive explicit closed expressions for the moment generating functions of whole collections of quantities associated with the waiting time till the occurrence of composite events in either discrete or continuous-time models. The discrete-time models are independent, or Markov-dependent, binary trials and the events of interest are collections of successes with the property that each two consecutive successes are separated by no more than a fixed number of failures. The continuous-time models are renewal processes and the relevant events are clusters of points. We provide a unifying technology for treating both the discrete and continuous-time cases. This is based on first embedding the problems into similar ones for suitably selected Markov chains or Markov renewal processes, and second, applying tools from the exponential family technology.
We consider the tail probabilities of a class of compound distributions. First, the relations between reliability distribution classes and heavy-tailed distributions are discussed. These relations reveal that many previous results on estimating the tail probabilities are not applicable to heavy-tailed distributions.
Then, a generalized Wald's identity and identities for compound geometric distributions are presented in terms of renewal processes. Using these identities, lower and upper bounds for the tail probabilities are derived in a unified way for the class of compound distributions, both under the conditions of NBU and NWU tails, which include exponential tails, as well as under the condition of heavy-tailed distributions.
Finally, simplified bounds are derived by the technique of stochastic ordering. This method removes some unnecessary technical assumptions and corrects errors in the proof of some previous results.
In this paper we describe a model for survival functions. Under this model a system is subject to shocks governed by a Poisson process. Each shock to the system causes a random damage that grows in time. Damages accumulate additively and the system fails if the total damage exceeds a certain capacity or threshold. Various properties of this model are obtained. Sufficient conditions are derived for the failure rate (FR) order and the stochastic order to hold between the random lifetimes of two systems whose failures can be described by our proposed model.
The classical martingale characterizations of the Poisson process were obtained for point process or purely discontinuous martingale i.e. under additional assumptions on properties of trajectories. Here our aim is to search for related characterizations without relying on properties of trajectories. Except for a new martingale characterization, results based on conditional moments jointly involving the past and the nearest future are presented.
We exhibit solutions of Monge–Kantorovich mass transportation problems with constraints on the support of the feasible transportation plans and additional capacity restrictions. The Hoeffding–Fréchet inequalities are extended for bivariate distribution functions having fixed marginal distributions and satisfying additional constraints. Sharp bounds for different probabilistic functionals (e.g. Lp-distances, covariances, etc.) are given when the family of joint distribution functions has prescribed marginal distributions, satisfies restrictions on the support, and is bounded from above, or below, by other distributions.
In this paper, we are concerned with preservation properties of first and second order by an operator L representable in terms of a stochastic process Z with non-decreasing right-continuous paths. We introduce the derived operator D of L and the derived process V of Z in order to characterize the preservation of absolute continuity and convexity. To obtain different characterizations of the preservation of convexity, we introduce two kinds of duality, the first referring to the process Z and the second to the derived process V. We illustrate the preceding results by considering some examples of interest both in probability and in approximation theory - namely, mixtures, centred subordinators, Bernstein polynomials and beta operators. In most of them, we find bidensities to describe the duality between the derived processes. A unified approach based on stochastic orders is given.
We will state a general version of Simpson's paradox, which corresponds to the loss of some dependence properties under marginalization. We will then provide conditions under which the paradox is avoided. Finally we will relate these Simpson-type paradoxes to some well-known paradoxes concerning the loss of ageing properties when the level of information changes.
For (μ,σ2) ≠ (0,1), and 0 < z < ∞, we prove that
where φ and Φ are, respectively, the p.d.f. and the c.d.f. of a standard normal random variable. This inequality is sharp in the sense that the right-hand side cannot be replaced by a larger quantity which depends only on μ and σ. In other words, for any given (μ,σ) ≠ (0,1), the infimum, over 0 < z < ∞, of the left-hand side of the inequality is equal to the right-hand side. We also point out how this inequality arises in the context of defining individual bioequivalence.