To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we clarify dependence properties of elliptical distributions by deriving general but explicit formulae for the coefficients of upper and lower tail dependence and spectral measures with respect to different norms. We show that an elliptically distributed random vector is regularly varying if and only if the bivariate marginal distributions have tail dependence. Furthermore, the tail dependence coefficients are fully determined by the tail index of the random vector (or equivalently of its components) and the linear correlation coefficient. Whereas Kendall's tau is invariant in the class of elliptical distributions with continuous marginals and a fixed dispersion matrix, we show that this is not true for Spearman's rho. We also show that sums of elliptically distributed random vectors with the same dispersion matrix (up to a positive constant factor) remain elliptical if they are dependent only through their radial parts.
In this paper we find conditions under which the epoch times of two nonhomogeneous Poisson processes are ordered in the multivariate dispersive order. Some consequences and examples of this result are given. These results extend a recent result of Brown and Shanthikumar (1998).
We extend classical renewal theorems to the weighted case. A hierarchical chain of successive sharpenings of asymptotic statements on the weighted renewal functions is obtained by imposing stronger conditions on the weighting coefficients.
Simple approximation techniques are developed exploiting relationships between generalized convex orders and appropriate probability metrics. In particular, the distance between s-convex ordered random variables is investigated. Results connecting positive or negative dependence concepts and convex ordering are also presented. These results lead to approximations and bounds for the distributions of sums of positively or negatively dependent random variables. Applications and extensions of the main results pertaining to compound Poisson, normal and exponential approximation are provided as well.
Ebrahimi (2001) proposes an interesting model for assessing a system's reliability, expressing the failure time of the system in terms of a deterioration process and covariates. He also provides illustrative examples and gives some properties of the model. In this note, we give conditions for negative ageing of the system's lifetime, and we correct one of his statements. Moreover, for the lifetimes of two systems of the same kind, some stochastic comparisons are presented.
Probability generation functions of waiting time distributions of runs and patterns have been used successfully in various areas of statistics and applied probability. In this paper, we provide a simple way to obtain the probability generating functions for waiting time distributions of compound patterns by using the finite Markov chain imbedding method. We also study the characters of waiting time distributions for compound patterns. A computer algorithm based on Markov chain imbedding technique has been developed for automatically computing the distribution, probability generating function, and mean of waiting time for a compound pattern.
This paper first recalls some stochastic orderings useful for studying the ℒ-class and the Laplace order in general. We use these orders to show that the higher moments of an ℒ-class distribution need not exist. Using simple sufficient conditions for the Laplace ordering, we give examples of distributions in the ℒ- and ℒα-classes. Moreover, we present explicit sharp bounds on the survival function of a distribution belonging to the ℒ-class of life distributions. The results reveal that the ℒ-class should not be seen as a more comprehensive class of ageing distributions but rather as a large class of life distributions on its own.
In this note, we give new proofs of the closure property of ageing classes NBUC and NBU(2) under convolution to make up the gaps in the proofs of Cao and Wang (1991) and of Li and Kochar (2001).
Ease of computation of Fréchet-optimal lower bounds, given numerical values of the binomial moments Sij, i, j = 1, 2, is demonstrated. A sufficient condition is given for an explicit bivariate bound of Dawson-Sankoff structure to be Fréchet optimal. An example demonstrates that in the bivariate case even the multiplicative structure of the Sij does not guarantee a Dawson-Sankoff structure for Fréchet-optimal bounds. A final section is used to illuminate the nature of Fréchet optimality by using generalized explicit bounds. This note is a sequel to both Chen and Seneta (1995) and Chen (1998).
Let be the scan statistic of window size r for a sequence of n bistate trials . The scan statistic Sn(r) has been successfully used in various fields of applied probability and statistics, and its distribution has been studied extensively in the literature. Currently, all existing formulae for the distribution of Sn(r) are rather complex, and they can only be numerically implemented when is a sequence of Bernoulli trials, the window size r is less than 20 and the length of the sequence n is not too large. Hence, these formulae have been limiting the practical applications of the scan statistic. In this article, we derive a simple and effective formula for the distribution of Sn(r) via the finite Markov chain embedding technique to overcome some of the limitations of the existing complex formulae. This new formula can be applied when is either a sequence of Bernoulli trials or a sequence of Markov dependent bistate trials. Selected numerical examples are given to illustrate our results.
Products of independent identically distributed random stochastic 2 × 2 matrices are known to converge in distribution under a trivial condition. Rates for this convergence are estimated in terms of the minimal Lp-metrics and the Kolmogoroff metric and applications to convergence rates of related interval splitting procedures are discussed.
In this paper we utilize a particular transformation of i.i.d. exponential random variables to derive two distributional identities. Throughout the analysis we discover some peculiar properties of exponentials. We also discuss possible generalizations and applications of the results.
During DNA replication, small fragments of DNA are formed. These have been observed experimentally and the mechanism of their formation modelled mathematically. Using the stochastic model of Cowan and Chiu (1992), (1994), we find the probability distribution of the number of fragments. A new discrete distribution arises. The work has interest as an application of the recent theory on quasirenewal equations in Piau (2000).
Univariate probability inequalities have received extensive attention. It has been shown that under certain conditions, product-type bounds are valid and sharper than summation-type bounds. Although results concerning multivariate inequalities have appeared in the literature, product-type bounds in a multivariate setting have not yet been studied. This note explores an approach using graph theory and linear programming techniques to construct product-type lower bounds for the probability of the intersection among unions of k sets of events.
Intrinsic volumes are key functionals in convex geometry and have also appeared in several stochastic settings. Here we relate them to questions of regularity in Gaussian processes with regard to Itô–Nisio oscillation and metrization of GB/GC indexing sets. Various bounds and estimates are presented, and questions for further investigation are suggested. From alternate points of view, much of the discussion can be interpreted in terms of (i) random sets and (ii) properties of (deterministic) infinite-dimensional convex bodies.
Let Xn, n ≥ 1 be a sequence of trials taking values in a given set A, let ∊ be a pattern (simple or compound), and let Xr,∊ be a random variable denoting the waiting time for the rth occurrence of ∊. In the present article a finite Markov chain imbedding method is developed for the study of Xr,∊ in the case of the non-overlapping and overlapping way of counting runs and patterns. Several extensions and generalizations are also discussed.
Let X = (X(t):t ≥ 0) be a Lévy process and X∊ the compensated sum of jumps not exceeding ∊ in absolute value, σ2(∊) = var(X∊(1)). In simulation, X - X∊ is easily generated as the sum of a Brownian term and a compound Poisson one, and we investigate here when X∊/σ(∊) can be approximated by another Brownian term. A necessary and sufficient condition in terms of σ(∊) is given, and it is shown that when the condition fails, the behaviour of X∊/σ(∊) can be quite intricate. This condition is also related to the decay of terms in series expansions. We further discuss error rates in terms of Berry-Esseen bounds and Edgeworth approximations.
In this note, we give some preservation results for the classes IFR(2), NBU(2) and their dual classes under the formation of special coherent systems. Further, we show with examples that the relationships among these aging classes and others are strictly one-way implications.
We examine how the binomial distribution B(n,p) arises as the distribution Sn = ∑i=1nXi of an arbitrary sequence of Bernoulli variables. It is shown that B(n,p) arises in infinitely many ways as the distribution of dependent and non-identical Bernoulli variables, and arises uniquely as that of independent Bernoulli variables. A number of illustrative examples are given. The cases B(2,p) and B(3,p) are completely analyzed to bring out some of the intrinsic properties of the binomial distribution. The conditions under which Sn follows B(n,p), given that Sn-1 is not necessarily a binomial variable, are investigated. Several natural characterizations of B(n,p), including one which relates the binomial distributions and the Poisson process, are also given. These results and characterizations lead to a better understanding of the nature of the binomial distribution and enhance the utility.
We consider a repairable system with a finite state space which evolves in time according to a Markov process as long as it is working. We assume that this system is getting worse and worse while running: if the up-states are ranked according to their degree of increasing degradation, this is expressed by the fact that the Markov process is assumed to be monotone with respect to the reversed hazard rate and to have an upper triangular generator. We study this kind of process and apply the results to derive some properties of the stationary availability of the system. Namely, we show that, if the duration of the repair is independent of its completeness degree, then the more complete the repair, the higher the stationary availability, where the completeness degree of the repair is measured with the reversed hazard rate ordering.