We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We analyse the role of Euler summation in a numerical inversion algorithm for Laplace transforms due to Abate and Whitt called the EULER algorithm. Euler summation is shown to accelerate convergence of a slowly converging truncated Fourier series; an explicit bound for the approximation error is derived that generalizes a result given by O'Cinneide. An enhanced inversion algorithm called EULER-GPS is developed using a new variant of Euler summation. The algorithm EULER-GPS makes it possible to accurately invert transforms of functions with discontinuities at arbitrary locations. The effectiveness of the algorithm is verified through numerical experiments. Besides numerical transform inversion, the enhanced algorithm is applicable to a wide range of other problems where the goal is to recover point values of a piecewise-smooth function from the Fourier series.
Known results relating the tail behaviour of a compound Poisson distribution function to that of its Lévy measure when one of them is convolution equivalent are extended to general infinitely divisible distributions. A tail equivalence result is obtained for random sum distributions in which the summands have a two-sided distribution.
This paper introduces a method of generating real harmonizable multifractional Lévy motions (RHMLMs). The simulation of these fields is closely related to that of infinitely divisible laws or Lévy processes. In the case where the control measure of the RHMLM is finite, generalized shot-noise series are used. An estimation of the error is also given. Otherwise, the RHMLM Xh is split into two independent RHMLMs, Xε,1 and Xε,2. More precisely, Xε,2 is an RHMLM whose control measure is finite. It can then be rewritten as a generalized shot-noise series. The asymptotic behaviour of Xε,1
as ε → 0+ is further elaborated. Sufficient conditions to approximate Xε,1
by a multifractional Brownian motion are given. The error rate in terms of Berry-Esseen bounds is then discussed. Finally, some examples of simulation are given.
Stratified and simple random sampling (or testing) are two common methods used to investigate the number or proportion of items in a population with a particular attribute. Although it is known that cost factors and information about the strata in the population are often crucial in deciding whether to use stratified or simple random sampling in a given situation, the stochastic precedence ordering for random variables can also provide the basis for an interesting criteria under which these methods may be compared. It may be particularly relevant when we are trying to find as many special items as possible in a population (for example individuals with a disease in a country). Properties of this total stochastic order on the class of random variables are discussed, and necessary and sufficient conditions are established which allow the comparison of the number of items of interest found in stratified random sampling with the number found in simple random sampling in the stochastic precedence order. These conditions are compared with other results established on stratified and simple random sampling (testing) using different stochastic-order-type criteria, and applications are given for the comparison of sums of Bernoulli random variables and binomial distributions.
The main result of the paper is a refinement of Xia's (1997) bound on the Kantorovich distance between distributions of a Bernoulli point process and an approximating Poisson process. In particular, we show that the distance between distributions of a Bernoulli point process and the Poisson process with the same mean measure has the order of the total variation distance between the laws of the total masses of these processes.
Staring form a probability σ on the half-line moments of any order A. G. Pakes has defined probabilities σr, by length biasing order r and gr, by the stationary-excess operation of order r, r = 1, 2,…Examples are given to show that σ can bt determined in the Stieltjes sence while σ1 and g1 are indeterminate in the Stieltjes sence. This shows that a statement in a recent paper by Pakes does not hold.
This paper has as its main theme the fitting in practice of the variance-gamma distribution, which allows for skewness, by moment methods. This fitting procedure allows for possible dependence of increments in log returns, while retaining their stationarity. It is intended as a step in a partial synthesis of some ideas of Madan, Carr and Chang (1998) and of Heyde (1999). Standard estimation and hypothesis-testing theory depends on a large sample of observations which are independently as well as identically distributed and consequently may give inappropriate conclusions in the presence of dependence.
The iterative division of a triangle by chords which join a randomly-selected vertex of a triangle to the opposite side is investigated. Results on the limiting random graph which eventuates are given. Aspects studied are: the order of vertices; the fragmentation of chords; age distributions for elements of the graph; various topological characterisations of the triangles. Different sampling protocols are explored. Extensive use is made of the theory of branching processes.
Let F be a probability distribution function with density f. We assume that (a) F has finite moments of any integer positive order and (b) the classical problem of moments for F has a nonunique solution (F is M-indeterminate). Our goal is to describe a , where h is a ‘small' perturbation function. Such a class S consists of different distributions Fε (fε is the density of Fε) all sharing the same moments as those of F, thus illustrating the nonuniqueness of F, and of any Fε, in terms of the moments. Power transformations of distributions such as the normal, log-normal and exponential are considered and for them Stieltjes classes written explicitly. We define a characteristic of S called an index of dissimilarity and calculate its value in some cases. A new Stieltjes class involving a power of the normal distribution is presented. An open question about the inverse Gaussian distribution is formulated. Related topics are briefly discussed.
The zonoid of a d-dimensional random vector is used as a tool for measuring linear dependence among its components. A preorder of linear dependence is defined through inclusion of the zonoids. The zonoid of a random vector does not characterize its distribution, but it does characterize the size-biased distribution of its compositional variables. This fact will allow a characterization of our linear dependence order in terms of a linear-convex order for the size-biased compositional variables. In dimension 2 the linear dependence preorder will be shown to be weaker than the concordance order. Some examples related to the Marshall-Olkin distribution and to a copula model will be presented, and a class of measures of linear dependence will be proposed.
Sums of independent random variables concentrated on discrete, not necessarily lattice, set of points are approximated by infinitely divisible distributions and signed compound Poisson measures. A version of Kolmogorov's first uniform theorem is proved. Second-order asymptotic expansions are constructed for distributions with pseudo-lattice supports.
The sooner and later waiting time problems have been extensively studied and applied in various areas of statistics and applied probability. In this paper, we give a comprehensive study of ordered series and later waiting time distributions of a number of simple patterns with respect to nonoverlapping and overlapping counting schemes in a sequence of Markov dependent multistate trials. Exact distributions and probability generating functions are derived by using the finite Markov chain imbedding technique. Examples are given to illustrate our results.
We study the properties of sums of lower records from a distribution on [0,∞) which is either continuous, except possibly at the origin, or has support contained in the set of nonnegative integers. We find a necessary and sufficient condition for the partial sums of lower records to converge almost surely to a proper random variable. An explicit formula for the Laplace transform of the limit is derived. This limit is infinitely divisible and we show that all infinitely divisible random variables with continuous Lévy measure on [0,∞) originate as infinite sums of lower records.
Suppose that {Xs, 0 ≤ s ≤ T} is an m-dimensional geometric Brownian motion with drift, μ is a bounded positive Borel measure on [0,T], and ϕ : ℝm → [0,∞) is a (weighted) lq(ℝm)-norm, 1 ≤ q ≤ ∞. The purpose of this paper is to study the distribution and the moments of the random variable Y given by the Lp(μ)-norm, 1 ≤ p ≤ ∞, of the function s ↦ ϕ(Xs), 0 ≤ s ≤ T. By using various geometric inequalities in Wiener space, this paper gives upper and lower bounds for the distribution function of Y and proves that the distribution function is log-concave and absolutely continuous on every open subset of the distribution's support. Moreover, the paper derives tail probabilities, presents sharp moment inequalities, and shows that Y is indetermined by its moments. The paper will also discuss the so-called moment-matching method for the pricing of Asian-styled basket options.
A recent paper by Lin and Stoyanov is devoted to the moment problem for geometrically compounded sums. The aim of this note is to provide affirmative answers to their conjectures.
For finite, homogeneous, continuous-time Markov chains having a unique stationary distribution, we derive perturbation bounds which demonstrate the connection between the sensitivity to perturbations and the rate of exponential convergence to stationarity. Our perturbation bounds substantially improve upon the known results. We also discuss convergence bounds for chains with diagonalizable generators and investigate the relationship between the rate of convergence and the sensitivity of the eigenvalues of the generator; special attention is given to reversible chains.
It has been observed that in many practical situations randomly stopped products of random variables have power law distributions. In this note we show that, in order for such a product to have a power law distribution, the only random indices are the exponentially distributed ones. We also consider a more general problem, which is closely related to problems concerning transformation from the central limit theorem to heavy-tailed distributions.
In this paper we derive the distribution of the total downtime of a repairable system during a given time interval. We allow dependence of the failure time and the repair time. The results are presented in the form of Laplace transforms which can be inverted numerically. We also discuss asymptotic properties of the total downtime.
The formation of patterns from letters of a finite alphabet is considered. The strings of letters are generated by general discrete- and continuous-time models which embrace as particular cases all models considered in the literature. The letters of the alphabet are identified by the states of either discrete- or continuous-time semi-Markov processes. A new and unifying method is introduced for evaluation of the generating functions of both the intersite distance between occurrences of an arbitrary, but fixed, pattern and the waiting time until the first occurrence of that pattern. Our method also covers in a unified way relevant and important joint generating functions. Furthermore, our results lead to an easy and efficient implementation of the relevant evaluations.
We show how good multivariate Poisson mixtures can be approximated by multivariate Poisson distributions and related finite signed measures. Upper bounds for the total variation distance with applications to risk theory and generalized negative multinomial distributions are given. Furthermore, it turns out that the ideas used in this paper also lead to improvements in the Poisson approximation of generalized multinomial distributions.